都市近郊緑地の大気保全機能
（立川市川越道緑地を例とした場合）

横山仁・久野春子*

緒 言

近年の東京都における大気汚染状況は、硫黄酸化物、一酸化炭素においては、環境基準の達成がみられたものの、二酸化炭素、光化学オキシダント、浮遊粒子状物質等については、依然基準達成には至っていない。さらに、最近では酸性雨、ヒートアイランド現象等の観測も報告されており、汚染状況の多種多様化とともに、産業型公害から都市・生活型公害へと変化している。また、これらの諸状況の深刻化にあいまって、東京都の島しょ地域を除く緑被率は、昭和47年には64.5％であったものが平成3年の調査では、59.6％に減少している（東京都、1992）と。こうした状況の中で、近年の汚染の発生源に対策とともに、都市における緑地の公益的機能を積極的に評価しようとする機運が高まりをみせて（環境庁、1989）。過去において、植物の大気浄化機能については、草本類から樹木を用いたものまでいくつかの研究が報告されている（Hi l l , 1971、荒木ら、1983、久野ら、1985、古川ら、1985、戸塚、1986、青木ら、1987）。しかし基礎データの蓄積はいまだ不十分であり、植物の持つ諸機能を定量的・定性的に評価するには至っていない。しかもその多くは、人為的な均質モデル群落を対象としており、実際の野生緑地に関する研究事例は極めて少ない。そこで本研究では、実際の都市近郊緑地の大気保全機能を調べることを目的として、東京都立川市郊外にある川越道緑地を対象緑地として設定し、その大気汚染環境及び微気象環境についての実地観測を行った。

I. 測定方法

1. 測定値の概要

川越道緑地は、立川市の北部に位置し、市が「立川市みどりの基本計画」に「みどりの拠点」として位置づけている緑地であり、雑木林の維持・管理を図りながら郷土の緑として保全・利用されている緑地である（立川市、1990）（図1）。緑地の西側に中学校、南方向約15mに数件の住宅があるが、緑地との間は道路建設用地として空地となっており、所々に露地がみられる草地となっている。また、北側約80m付近まで畑地が続き、その先は住宅団地となっている。今回測定を行ったのは、群落密度約1050本/ha、平均群落高さ約3mのコナラ、クヌギ、エゴノキ、エノキ等を優占樹種とする面積3100㎡の林分である。

2. 測定方法

1) 水平分布の測定

緑地内外を南北方向（図2、S-N）に、高さ1.5mの測定点を4点設け、それぞれS1、1、1、Nとし（全長約65m）、オゾン（O₃）、濃度および気温・相対湿度・風速を測定した。O₃濃度の測定は紫外線吸収型オゾン計（DASIBI製1003-AH）を用い、各測定点まで配置したテフロン製サンプリング管（直径6㎜内径4㎜）により試料大気を吸引し、タイマー式電磁弁（荏原実業製、Solenoid Multi BOX）により3分間隔で測定点毎に切り換えることにより行った。気温の測定には受感部をエナメル被覆した直径0.3㎜の銅一コンスタンタン型熱電対を用い、また、湿度

※現東京都林業試験場
図1. 川越道緑地（図中部分）の概要

図2. 川越道緑地における測定の模式図

の測定には電気抵抗型温度計（VAISALA 製、HMP133Y）を用いた。湿度測定の前後には、塩化リチウム（LiCl）および塩化ナトリウム（NaCl）の飽和塩水溶液を満たした湿度校正器（同、HMK 11）により、器内気温を25℃に設定した条件で湿度校正を行った。これら気温、湿度の感熱部は、銀色塗装したプラスチック製のロート型覆いにより遮光され、自然通风条件のもとで湿度の測定を行った。風速については、熱線風速計（日本カノンック製ドラフトマスター MODEL6311）を主風向に設定することにより測定した。

2) 垂直分布の測定

緑地内の数カ所において樹高測定用の樹高枠にサンプリング管と鋼－コンスタンタン型熱伝導を取付け、高さを段階的に変えることにより、0.5, 1, 3, 6, 9, 12, 14 mの各高さにおける気温とオンゾン濃度を測定し、その後垂直分布を調べた。

3) 卓越風向・風速及び光量子束密度の測定

林縁より両側に約8 m離れた林外に、高さ6 mの鉄製ポールを設置し、その上部に光電式風向計（牧野応用測器製、VF016）及び光電式三杯風速計（同、AF750）を取り付けることにより、卓越風向及び風速を測定した。風向・風速計より発信されるパルス信号を指示変換器（同AVS621）によりアナログ変換しデータロガー（後出）に記録した。さらに、測定期間中の林外及び林内の光量子束密度をシリコンフォトダイオードと光学フィルターを組み合わせた小型光量子センサー（小糸工業製IKS-25、分光感度特性約400〜700nm）にて測定した。

4) データの収録・処理

短時間の微細な湿度・気象変動を記録するため、1分毎に得られたデータをデータロガー[英松精密製MP-090（ソラックIII）]及び三洋電気製DDR-531N]内蔵の3.5"フロッピーディスク及びRAMカセットに収録した。データの回収・処理・解析には、パーソナルコンピュータ（NEC製PC-9801VM, DA, EPSON製PC-268800K）を用いた（図3）。
以上の測定は、1991年8〜9月の間に、最多風向SE〜S、平均風速1.2m/s、光量子束密度約900〜1200μE/m²/sのもとで行った。

II. 結果及び考察

1. 水平分布の測定結果

緑地内外における地上高1.5m地点の気温、湿度、風速およびO₃濃度の水平分布を図4に示す。

気温は林内のI₁で最も低下し、Sと比較して2.4℃低かった（図4、▲）。

相対湿度はI₁が最も高く、Sに比べ6.5%高い値を示していた（同、■）。

また、林外風下のN地点では、S地点に比較して、気温で0.7℃低く、相対湿度では約4%高い値を示していた。これは、緑地内の温度環境が風下側の林外に波及した結果であると考えられ、丸山（1983）によって述べられている“にじみだし現象”に相当するものであると思われた。

風速は、林内のI₁地点ではほぼ半減し、林外のNで再び上昇したもののでSと比較すると約30%
東京都農業試験場研究報告 第25号（1993年）

減衰していた（同，×）。ただし，1.1よりNで風速が大きかった点については，周囲から回り込みによるものが主な原因であると思われが詳細は不明である。

また，0.1濃度は林外風上のSから林内の1.1までそして林外風下のNへと行くにつれて次第に減少した（同，●）。Sにおける濃度に対して1.1で4.7％，1.2で5.9％，Nでは10.5％減少し，緑地における0.1濃度の低減効果が認められた。

さらに，緑地の北側の林縁から12mまでの0.1濃度の変化をみると（図5），林縁0mで最も低下し，緑地から距離離れるに従いわずかに上昇しているものの，12m付近でもSと比較して約4％低下していることが分かった。

以上のことから，今回ののような大規模かつ低密度の緑地であっても，その内部では外部とは異なる大気環境が形成されており，丸田（前出）によって報告されている気象の“にじみ出し現象”だけではなく，O3濃度の低減効果も緑地内で認められることが明らかとなった。

2. O3濃度の水平分布と風向との関係

図6に川越緑地におけるO3濃度の水平分布と風向との関係について示す。

風向Sの時，緑地内NにおけるO3濃度は最も低下した（図6，●）。

風向Sでは，緑地内の濃度が低下し，1.2では風向SSEよりも低濃度となっているが，緑地外のNではむしろ高くなる傾向がみられた（同，○）。

また，風向きSの時においても，風向Sとはほぼ同様の結果がみられた（同，◎）。
さらに，風向SSEの逆風時にあたるNNW，の時にはNからSに向かうに従い次第に減少し，風向SSE時に同様の傾向を示した（同，●）。

図5. 川越緑地（●）における林縁からの距離と臭気濃度の変化（1991.9.5 13:48～16:36の平均値）（SにおけるO3濃度を100とした）

図6. 川越緑地（●）におけるO3濃度の水平分布と風向風速との関係（またはNにおけるO3濃度を100とした場合の相対値，右端は風向，風速，日付を表す）
横山・久野：都市近郊緑地における大気保全機能について

以上のように、川越道緑地によるO₃濃度低減の割合は均一ではなく、風環境により変化することができる。これは、群落を構成する植被の規模・密度といった緑地の群落構造に起因するものであると言われ、群落構造が不均一な緑地の特性といえるものである。今後の都市緑化において大気浄化を期待する場合、緑地の規模、配置等において十分な検討を要する事を示唆するものである。

一般に植物群落の大気浄化能力は、気温の増加や上昇することが報告されている (Chamberlain & Chadwick, 1953, 齋藤ら, 1971, 青木ら, 1987)。群落構造が均一でない緑地の近接地では、風速だけではなく風向によっても浄化能力は大きく変化することがわかった。

3. 気温、O₃濃度の垂直分布

図7に、緑地内の気温、O₃濃度の垂直分布を示す。緑地内の気温は、地上3m付近で最も高く、9m付近で最も低かった（図7 ▲）。3m付近は、樹冠部位の遮蔽と蒸散による潜熱輸送の結果、気温が低下したものと思われ、また、9m付近は樹冠層下部からの顕熱輸送により高温化したものと思われた。さらに12m付近での気温の低下は、樹冠層蒸散作用による潜熱輸送によると考えられた。

12m付近でのO₃濃度の低下は、群落直上大気と樹冠層とのガス交換により、O₃が樹林に吸収された結果で地上1.5m付近での濃度が高かったのは、葉面積密度が極めて低かったためと推測された。

川越道緑地は樹冠部の枝葉の密度が高く、緑地内光量子体密度は低い（約30〜90 μE/m²/s, 対緑地外気比：3 〜10%）。また、人による踏踏等の影響も加わり、地面〜地上約3mまでの葉面積密度は極めて低い構造となっている。これらの緑地の垂直構造の状況が、上記の結果をもたらしたものと考えられた。

ただし、葉面積密度が極めて低いはずの地上0.5m付近でO₃濃度が最も低かった原因については明らかでないが、指宿（1987）は、SO₃が土壌によって吸着されることを報告しており、また、青木ら（1987）も森林、水田等の浄化能力には劣るもの、裸地土壌面における大気汚染の浄化作用を認めている。以上のことから、地面によるO₃の減衰が考えられるが、今後は、地面と大気との相互作用についても調査していく必要があると思われた。

以上の結果から、緑地の垂直構造が大気の垂直分布に与える影響は大きいと考えられるが、前出の水平分布と同様に今後の群落構造の詳細な調査を行い、大气環境との関連についての検討を加えていくことが必要である。

最後に、本研究を進めにあたり、川越道緑地の使用を快く許可下さった立川市建設部公園緑地課の皆様に厚く御礼申し上げます。

摘 要

都市近郊緑地の持大気保全機能を調べるために、立川市近郊にある川越道緑地を都市近郊緑地として設定し、大気汚染状況及び微気象観
境の測定を行った。
大気汚染物質としてオゾン（O₃）を、また、
微気象環境要素として、気温、湿度、風速、光
量子束密度を測定対象項目とし、緑地内外にお
ける変化を測定した結果、以下が明らか
となった。
1. 地上1.5mにおける緑地内の大気環境は、
緑地外とは明らかに異なった状況を呈していた。
すなわち、緑地外に比べO₃濃度及び気温は最大
でそれぞれ6%及び2.4℃低下し、相対湿度
は約6.5%上昇していた。さらに、風速は約50
%減衰され、全体として緑地外とは異なる温溼
な大気環境が形成されていた。
2. 緑地の大気保全機能は、その内部だけでは
なく緑地外へも波及していることが実測された。
緑地に対し南風が卓越している場合、緑地の北
端より北側へ約8m離れた地点におけるO₃濃度
は、風上の緑地外の測定点に比べ約11%低く、
緑地内の濃度よりもさらに低くなっていた。同
様に気温は約0.7℃低下し、相対湿度は4%高
くなっており、風速は約30%減衰していた。ま
た、緑地の北端より12m北側へ離れた地点にお
いても約4%のO₃濃度の低減効果が認められ、
緑地による浄化効果は、およそ群落高さに相当
する距離には少なくとも波及するものと思われ
た。
3. 緑地による大気保全機能は、常に一定では
なく風向風速によってさまざまなに変化すること
がわたった。今回の測定では、比較的低風速条
件のものに限られたが、高風速条件や日照等そ
の他の気象条件との関連についても今後検討す
ることが必要である。
4. 緑地内におけるO₃濃度及び気温の垂直分布
は、緑地の垂直構造に密接に関連していること
を示唆するものであった。特にO₃は、葉面積密
度の高い樹冠部付近では低く、葉面積密度の低
い地面～高さ3mの付近では高くなる傾向を示
した。主な生活空間といえる地上約1.5m付
近の大気環境の改善は重要であり、今後の都市
の緑化計画や緑地の管理手法において十分な配
慮を要する点であると思われた。

引用文献
青木正敏・戸塚誠・鈴木義則・森岡進（1987）
：緑地の大気汚染浄化能と、国公研報、No.108,
41-51.
荒木真人・佐々木英明・原木茂・岡上正夫
（1985）：オゾン濃度減衰に及ぼす樹林の効果、
林試研報、No.321,51-87.
Hill,A.C.(1971):Vegetation;A sink for
Control, Assoc., 21,341-346．
古川昭雄・佐々木美緒子・森田茂則（1985）
：植物群落によるオゾンの吸収、国公研報、第
82号、III-3,123-136.
環境庁大気保全局大気汚染対策監修・大気環境に
関する緑地機能検討会編著（1989）：大気浄
化植樹指針、第一法規出版。
久野春子・寺門和也・宮田和恵（1985）：都市
内人工コノクラ林の生長過程と環境への影響、
人間と環境、Vol11, No. 2, 31-44．
丸田順一（1983）：都市気候と公園緑地、地理、
43-50
齊藤隆幸・礦野宮本・永井良典・塚本滋子
（1971）：牧草畑へのSO₂ガス付着量の推定、
農業気象、26,1-4.
指宿俊明・青木正敏・戸塚誠（1986）：土壤に
よるSO₂の吸着と硫黄酸への変換、第27回大気
汚染学会要旨集45-1．
立川市建設部公園緑地課（1990）：立川市みど
りの基本計画報告書一やさしさとふれあいの
みどりづくり一（概要版）、立川市。
東京都環境保全局環境部（1992）：東京都環境
管理計画－新たな展開にむけて－、東京都、8
-37.
戸塚誠（1986）：植物の大気環境浄化機能に関
する研究、国公研予稿集,17-25.
Characteristics of Atmospheric Environment at Suburban Green Space.

(The Case of KAWAGOEDO-Green Space in Tachikawa City.)

Hitoshi YOKOYAMA, Haruko KUNO

Summary

For researching of atmospheric environment at suburban green space, we assumed "KAWAGOEDO Green Space" in the suburbs of Tachikawa city, to suburban green space, and, carried out the studies of air pollutant (ozone) and micro-meteorological element (air temperature, relative humidity, wind speed and quantum flux density of 400-700nm) in and out of there. Obtained results were summarized as follows.

1. Atmospheric environment in the green space was clearly different from the out of there. That was to say, ozone concentration (\(O_3\)), air temperature (AT), wind speed (WS) and relative humidity (RH) in there, were severally about the maximum 6%, 2.4°C, 50% low and 6.5% high as compared with the out of there. After all, air pollutant (ozone) decreased, and the climate was mild in there.

2. Atmospheric environment in the green space being carried over the out of there, was observed. When the south wind was blowing over the green space, \(O_3\), AT, WS, RH at the observation point distance from there to north about 8m, were severally about 11%, 0.7°C, 30% low and 4% high as compared with the south point out of there. Furthermore, that \(O_3\) at the distance about 12m was low about 4%, suggests that the effect of the green space carryover about as far as the average height of trees at least.

3. The function of preservation of atmospheric environment by the green space is not constant but variable cause by wind direction and speed. It is necessary to examine into the relationship with the solar radiation and the other meteorological factor from now on.

4. That the vertical distribution of \(O_3\) and AT in the green space was related to vertical construction of there was suggested. Example, \(O_3\) was lower at the crown space that was higher leaf area density, than the trunk space that was lower leaf area density under about 3m height. The above result suggests the importance of investigation of greening planning and management of green area at the point of under about 3m height area of human action.

※ Tokyo Metropolitan Forestry Experiment Station