コマツナ交配母本‘YR江戸川’およびF₁品種‘01試交12’の育成
～キャベツ萎黄病抵抗性のコマツナへの導入～

野口 貴

キーワード：Brassica，萎黄病抵抗性，形質導入，コマツナ，種間雑種

緒 言

コマツナは東京都における主要農産物であり、平成14年度の収穫量は10,900tで全国2位，出荷量は10,200tで全国1位となっている（農林水産省統計情報部，2003a）。近年，消費者サイドからその栄養価が評価され需要が高まる一方，生産者サイドからは，重労働を必要としないことや高い所得率が評価され，全国的に作付け面積が増加している（農林水産省統計情報部，2003b）。

コマツナは，正月の雑煮や煮物の具として用いられてきたように，本来は春から春の冷涼な時期に栽培される野菜であった。しかし，耐暑性品種の登場や施設栽培の普及に伴い，周年にわたって栽培されるようになった。そうした中，1987年には，Fusarium oxysporum f. sp. conglutinansによる萎黄病が発生し，被害が急速に拡大した（阿部・堀江，1988；阿部ら，1989；阿部・堀江，1995）。東京都農業試験場では，本病の防除対策を講ずるため，耐病性品種の検索や防除薬剤の適用拡大などの試験を進めるとともに，萎黄病菌株を種苗メーカーへ提供することにより，民間における耐病性品種の育成にも貢献してきた（阿部・堀江，1995）。

一方，民間におけるコマツナ品種の開発は，昭和50年代からF₁品種が主流となり，育種素材は，在来コマツナからB. campestris品種全体に広がっている。それとともに，周年用品種からは，季節に応じた専用品種が開発されるようになった。萎黄病が問題となる夏まき栽培では，紫花や軟弱ちよ，貯蔵性などが重要な指標形質となっている。また，コマツナの施設栽培においては，害虫の防除効果を有する紫外線カットフィルムの利用が期待されているが，コマツナの被覆により，生育が軟弱ときずむ問題が発生している。そこで，萎黄病抵抗性コマツナの育成にあたっては，夏まき栽培や紫外線カットフィルムの利用に対応したF₁品種の育成を最終目標にした。

本稿では，キャベツ種に由来する萎黄病抵抗性が導入されたコマツナ交配母本‘YR江戸川’および实用的F₁品種‘01試交12’の育成経過とその特性について記述した。併せて，アブラナ科における異種植物間の形質導入について考察した。

I. 種間雑種（合成ナプス）の育成

1. 材料および方法

キャベツでは，高温条件下でも安定した萎黄病抵抗性を示すtype A抵抗性が見いだされており，その遺伝様式は，単因不完全性遺伝であることが明らかになっている（Walker，1930；Blank，1937）。そこで，type A抵抗性の確認されているキャベツ‘Jersey Queen’および‘Badger shipper’（飯塚，1971）を萎黄病抵抗性の素材として用いた（図1）。

-1-
この2品種は、キャベツ根腐病のレース判定に用いられている品種である（Williams, 1966）。一方、コマツナは、合成ナプス‘千宝菜1号’の育成時に利用された‘晩生小松菜’（永野ら, 1988）のほか、「晩生大葉小松菜、井草丸葉小松菜’を用いた。また、コマツナと同種（B. campestris）の根腐病抵抗性タアサイ‘76S’（1989年10月、長野県野菜花き試験場から提供）を併せて利用した。

1990年に、コマツナ等4品種とキャベツ2品種との間で正逆交雑した。交雑は、開花前日から2日前の蕾を用い、除雄後直ちに受粉し、ゼラチン製のハーデカプセルを被せて、湿らせた脱脂綿で検する方法によった。コマツナおよびタアサイを母方（子房親）とする組み合わせでは、Inomata(1977), 猪俣(1986), 松澤(1978), 皿島・松澤(1986)の方法を参考にして、子房培養と胚培養を併用して雛種の育成を図った。すなわち、交雑後4〜7日後の子房を、カゼイン加水分解物500mg/ℓを含むWhite (1963)の培地で培養し、40日後に、子房（荚）から幼胚を摘出し、同上のWhite 培地、Murashige and Skoog(1962)の無機塩類を1/2濃度に変更した培地（1/2 MS 培地）およびGamborg et al.(1968)の塩化カルシウム濃度を5倍に変更した培地（MB5培地）のいずれかに均等に振り分けて培養した。

キャベツを母方とする交雑では、交雑後14〜28日後に、胚から胚珠を摘出し、Takeshita 等(1980)，皿島・松澤(1986)の方法に準じて、White の培地で培養した。

発芽した植物体は、数回にわたり離代し、順化処理後に転上げた。なお、培養過程で二次胚や不定芽が発生した場合には、生育の旺盛な1個体を選抜して離代した。

作出された植物体の雛種性は、酸性フォスファターゼアイソザイムの分析、染色体観察、形態等の特性調査によって判定した。

アイソザイム分析は、次のように電気泳動法で行って行った。新鮮な葉1gを、0.7mol/ℓのメルカプトエタノールと適量のポリビニルピロリドンを含む緩衝液（38mM トリス+2.5mM クエン酸+20％ショ糖）中で繊破し、遠心処理により粗酵素液を抽出した。電気泳動は、11〜12％のポリアクリルアミド分離用ゲルを用い、泳動用緩衝液として、5 mM トリスと3.8mM グリシンを含む溶液(pH8.6)を用いた。染色液は、ファーストガーネット CGB 砂を溶かし
た 1 M 酵酸ナトリウム（0.2% α-ナフチル酵酸含有）を用い、溶媒用のゲルを浸して染色した。染色体観察は、根端細胞においては、2 mM の 8-ヒドロキシキノリンで処理した後にカルノア液で固定し、11N 酢酸（60℃）で加水分解処理した。シップの試験と酵酸カーミンで染色し、押しつぶし法により検査した。花粉母細胞においては、採取した箱から薬のみを取り出してカルノア液で固定し、酵酸カーミンを滴下して押しつぶし法により検査した。

2. 結果および考察

Brassica campestris × *B. oleracea* における結実率は、タアサイを用いた場合を除き、ほぼ 70～80% となり、品種による差異は小さかった。秋期の発芽率は、子房培養を交雑後 6 日目に行った場合、および White 培地を用いた場合に最も多かった（表 1）。なお、MB 5 培地では、二次胚の発生がみられた。全組み合わせで、115 個の胚が発芽したが、そのうち維代可能となったものが 49 個体、さらに順化が成功し、発芽できたものが 21 個体であった。

B. oleracea × *B. campestris* においては、268 花の交雑を行ったが、交雑後の日数の経過に伴って次第に褐色化し、脱落した。交雑後 14～27 日目の実株から胚珠を順次摘出して培養した結果、発芽胚は得られなかった。

21 個の再生植物について、アイソサイズム分析を行った結果、コマツナに特有なバンド（K3 ～ K7）の一部または一部とキャベツのバンド（C1 ～ C3）を併せ持っていたものが 10 個体見いだされた（図 2）。さらに、染色体を観察したところ、そのうちの 4 個体は複数体（2n=19），他の 2 個体は培養の過程で染色体が倍加したとみられる複数体（2n=38），残りの 4 個体は、染色体数の差異が観察された。2n=19 前後の異数体と判断された（表 2）。White と腎培養培地を経て再生された 11 個体のうち 10 個体がコマツナ型の傾母植物であり、MB 5 培地に由来した 6 個体のうち 3 個体が異数体であった。また、コマツナ型傾母植物 11 個体は全て「秋生小松菜」から生じた。このことから、母方の品種や胚培養培地の種類は、傾母植物や異数体の出現率に影響を及

表 1 *Brassica campestris* × *B. oleracea* における子房培養開始時期および胚培養培地の発芽胚数

<table>
<thead>
<tr>
<th>交雑組み合わせ</th>
<th>交雑数</th>
<th>結実数</th>
<th>交雑後の子房培養期数</th>
<th>胚培養における一葉あたり発芽胚数</th>
</tr>
</thead>
<tbody>
<tr>
<td>順期</td>
<td>井草 × BS</td>
<td>74</td>
<td>60 (81)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.75</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>晩生 × BS</td>
<td>16</td>
<td>128 (76)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.33</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.3</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.33</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>大葉 × BS</td>
<td>35</td>
<td>25 (69)</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.33</td>
<td>0.0</td>
<td>0.2</td>
</tr>
<tr>
<td></td>
<td>765 BS ×</td>
<td>102</td>
<td>42 (41)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td>6</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>晩生 × JQ</td>
<td>44</td>
<td>34 (77)</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>大葉 × JQ</td>
<td>38</td>
<td>29 (76)</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.0</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.31</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.31</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>小計</td>
<td>463</td>
<td>318 (69)</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5</td>
<td>0.31</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>0.3</td>
<td>0.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7</td>
<td>0.31</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>0.23</td>
<td>0.29</td>
<td>0.36</td>
</tr>
</tbody>
</table>

a) 子房培養と胚培養を併用。子房培養後。胚を摘出して培養。
b) 井草：井草丸葉小松菜、晩生：秋生小松菜、大葉：秋生大葉小松菜。765：タアサイ765、BS：Badger Shipper、JQ：Jersey Queen。
c) White(1963)。
d) Murashige & Skoog(1962)の無機成分を1/2濃度に改良。
e) Gamborg et al.(1968)の無機成分を一部改良。
f) 胚培養によって得られた一葉あたり発芽胚数を数
図2 子房培養・胚培養によって得られた種間雑種
酸性フォスファーゼアイソサイム:Cはキャベツ, Kはコマツナ, C1～C3はキャベツ特有バンド, K3～K7はコマツナ特有バンド

ほすと考えられた。

種間10個体は、キャベツ状の葉の形が大きく、コマツナ状のヒドロゲノ類似の形を示したが、形は多様で、卵形のもの（No. 4, 24, 29）や葉柄に羽状の小葉を持つもの（No.27, 29, 31-1, 31-2, 33, 34）、長い葉柄と心臓形の葉身を持つもの（No.16）があった。また、中央部の末尾葉は半ば抱き合い半結球状を示すもの（No. 3, 24）、広く開張しているもの（No.16）、細い葉を持つもの（No. 3, 4）、柔らかい葉を持つもの（No.16, 27, 33）など、それぞれが異なる特徴を示していた。なお、異数体の根は、分けつけのある着生状を示しており、花茎を切断除去したところ、根系から多数の不定芽が再生した（図3）。

以上の種間雑種（合性ナプス）を、その後の成績交雑に用いた。

II. 戻し交雑による萎黄病抵抗性コマツナ型復帰植物の育成

1. 材料および方法

戻し交雑第1代（BC1）の育成は、種間雑種に、‘晚生小松菜、井草九葉小松菜、晚生大葉小松菜、新黒水菜’ならびにタアサイ‘76S’を戻し交雑することによって（1991年）。B.napusとB.campestrisの種間交雑では、前者を母方にとする組み合わせが容易であることから（角田・日向, 1982）。本試験では、母方に種間雑種、父方にコマツナおよびタアサイとする組み合わせののみ行った。その後の戻し交雑（1992年）や検定交雑（1993年）では、萎黄病感
表 2 再生体の作出条件と雛種性

<table>
<thead>
<tr>
<th>再生体No.</th>
<th>菌株組み合わせ</th>
<th>姿培養基地</th>
<th>ゲノム構成</th>
<th>雛種性</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>晃生 × BS</td>
<td>1/2MS</td>
<td>ac ± a</td>
<td>変形体 ○</td>
</tr>
<tr>
<td>4</td>
<td>晃生 × BS</td>
<td>MB5</td>
<td>ac</td>
<td>発毛数体 ○</td>
</tr>
<tr>
<td>9-1</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>9-2</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>9-3</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>9-4</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>10-1</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>10-2</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>10-3</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>10-4</td>
<td>晃生 × BS</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>16</td>
<td>大葉 × BS</td>
<td>1/2MS</td>
<td>aacc</td>
<td>複2倍体 ○</td>
</tr>
<tr>
<td>23-1</td>
<td>晃生 × JQ</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>23-2</td>
<td>晃生 × JQ</td>
<td>White</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>24</td>
<td>晃生 × JQ</td>
<td>MB5</td>
<td>ac</td>
<td>複半数体 ○</td>
</tr>
<tr>
<td>25</td>
<td>晃生 × JQ</td>
<td>MB5</td>
<td>aa</td>
<td>コマツナ ×</td>
</tr>
<tr>
<td>27</td>
<td>晃生 × JQ</td>
<td>1/2MS</td>
<td>aacc</td>
<td>複2倍体 ○</td>
</tr>
<tr>
<td>29</td>
<td>大葉 × JQ</td>
<td>White</td>
<td>ac</td>
<td>複半数体 ○</td>
</tr>
<tr>
<td>31-1</td>
<td>大葉 × JQ</td>
<td>MB5</td>
<td>ac ± a</td>
<td>変形体 ○</td>
</tr>
<tr>
<td>31-2</td>
<td>大葉 × JQ</td>
<td>MB5</td>
<td>ac ± a</td>
<td>変形体 ○</td>
</tr>
<tr>
<td>33</td>
<td>大葉 × JQ</td>
<td>MB5</td>
<td>ac ± a</td>
<td>変形体 ○</td>
</tr>
<tr>
<td>34</td>
<td>大葉 × JQ</td>
<td>1/2MS</td>
<td>ac</td>
<td>複半数体 ○</td>
</tr>
</tbody>
</table>

a) 品種名は表1と同じ。

受性品種「さおり小松菜」（（株）トーホク、以下「さおり」と略称）を用いた。その他の交雑方法は、前述のとおりとした。

観察結果の選抜では、染色体観察やアイソサイド分析を適宜行いながら、萎黄病抵抗性を有し、コマツナの形態を強く示すものを選ぶようにした。

萎黄病検定は、採種した種子を苗箱に播種し、野村ら（1976）の方法を一部変更して行った。すなわち、コマツナ萎黄病菌 Fusarium oxysporum f.sp. conglutinans FB-8-1 菌株（東京都農業試験場所属）を、ジャガイモ剪汁液体培地（ジャガイモ 200g、シュ糖 20g、蒸留水 1,000ml）中で約7日間振とう培養して増殖した。蒸発処理により菌株を回収し、蒸留水を加えて 1×10⁷個/ml の懸濁液とした。苗の子葉が展開した後に、育苗箱あたり懸濁液 1,000ml を滴注接種した。菌株接種は、実験によって、6～7 回反復した。なお、検定場所は、ガラスハウスまたは人工気象室内とし、基準は、27～28℃を目標とした。

2. 結果および考察

（1）交雑第1代（BC1）の萎黄病検定と抵抗性個体の選抜

萎黄病検定による種子穫性は、複2倍体の F1-No.16、
27 で高く、それぞれ 80, 90% を超えた。一方、複
半数体では 10% 以下となり、異数体では 0% であっ
ta (表3)。ただし、異数体であっても、No.31・1 な
どの不定芽から再生した栄養繁殖系世代の中には、結
実した個体があった。

に戻し交雑によって得られた BC2 約 3,700 個体を差
黄病検定に供した結果、540 個体が抵抗性個体とし
て選抜された（表3）。複数体の F1 及び No.16 および
27 に由来する BC1 は、ゲノム構成が asc であり、
キャベツの 1 種のゲノムを保有していたが、耐性個
体の割合は、それぞれ 19%, 4 ~ 37% と低かった。

これは、高地寒 (32℃、表3) による宿主植物の抵抗
力の低下（野村・石井、1989a）が原因と考えられ
た。

以上の萎黄病検定を踏まえ、コマツナの形質を強
く示した 97 個体を選抜した（図4）。

(2) 戻し交雑第2代 (BC2) の萎黄病検定と抵抗性個
体の選抜

生井(1976) によれば、異種ゲノム間の形質導入の
可能性が大きいのは、複数体 F1 を経過して次代で
二基三倍体となり、その次代以降に単ゲノム種型復
帰個体になる場合であるから、本試験では、複
半数体の F1・No.4, 24, 34 に由来する BC1 の利用
が望まれあった。そこで、これらの BC1 に「さ
おり」を交雑したところ、種子がほとんど採れない
かった。一方、F1・No.16 および 27 に由来する BC1 は
花粉稔性があり、種子が採れるようであった。そこ
で、二基三倍体を含む異数体を選び、戻し交雑個体と
なる場合には、形質導入の可能性があることを踏まえ
（生井、1976）、F1・No.16, 27 に由来する BC1 から
異数体の BC2 を挙げて、BC3 世代で萎黄病抵抗性を有
するコマツナ型復帰個体の獲得を図った。

BC1 の選抜個体 (97 個体) のうち、F1・No.16 に由来
する 8 個体 (BC1-2 系統) については、別の研究部
署にその後の扱いを委ね、No.27 に由来する BC1-C
4 ~ 7 の 4 系統 77 個体を残した。このうち、花器
の形態や抽粋時期がコマツナに近い個体に「さ
おり」を交雑し、得られた BC3 世代を移植して萎黄
病検定に供した（表4）。BC3 種子の発芽率は、系統
によって異なり、0 ~ 78.8% であった。検定の結果、

<table>
<thead>
<tr>
<th>系統</th>
<th>交雑組み合わせ</th>
<th>被検定個体数(A)</th>
<th>抵抗性個体数(B)</th>
<th>B/A×100</th>
<th>選抜数</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC1-1 No. 4 (ac) × 島生</td>
<td>47</td>
<td>20</td>
<td>43</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>-2</td>
<td>16 (aacc) × 島生</td>
<td>1500</td>
<td>283</td>
<td>19</td>
<td>8</td>
</tr>
<tr>
<td>-4</td>
<td>24 (ac) × 島生</td>
<td>24</td>
<td>9</td>
<td>38</td>
<td>5</td>
</tr>
<tr>
<td>-5</td>
<td>27 (aacc) × 大葉</td>
<td>1000</td>
<td>39</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>-6</td>
<td>27 (aacc) × 新黒</td>
<td>500</td>
<td>46</td>
<td>9</td>
<td>20</td>
</tr>
<tr>
<td>-7</td>
<td>76S</td>
<td>250</td>
<td>93</td>
<td>37</td>
<td>17</td>
</tr>
<tr>
<td>-9</td>
<td>29 (ac) × 大葉</td>
<td>17</td>
<td>1</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>-10</td>
<td>34 (ac) × 大葉</td>
<td>1</td>
<td>1</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

a) 1991年9月～12月、苗検6回。温度は23～32℃で培養、東京都農業試験場ガラスハウス内。
b) 種子稔性は、再生体 (ac) にコマツナ等 (ac) を交配した際の結果 (実数/検定数×100)とした。c) 未検定。

表4 戻し交雑第2代 (BC2) の萎黄病検定

<table>
<thead>
<tr>
<th>系統</th>
<th>交雑組み合わせ</th>
<th>産苗株数</th>
<th>発芽 (供試) 種子数</th>
<th>萎黄病検定</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC2-4-1S</td>
<td>BC2-4-1 (F1×島生) × 島生</td>
<td>36</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>-5-1S</td>
<td>-5-1 (F1×大葉) × 島生</td>
<td>37</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>-7-1S</td>
<td>-7-1 (F1×76S) × 島生</td>
<td>52</td>
<td>41</td>
<td>13</td>
</tr>
<tr>
<td>-7-2S</td>
<td>-7-2 (F1×76S) × 島生</td>
<td>23</td>
<td>7</td>
<td>5</td>
</tr>
</tbody>
</table>

a) 1992年9月～10月、苗検1回。発芽率24～28℃で培養、東京都農業試験場ガラスハウス内。
表 5 戻し交雑第3代（BC$_3$）系統の萎黄病検定および選抜数

<table>
<thead>
<tr>
<th>戻し交雑組み合わせ</th>
<th>採種・播種数</th>
<th>抵抗性</th>
<th>選抜数</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC$_2$-4-15-1 × さおり</td>
<td>68</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>-2 × さおり</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>BC$_2$-7-15-1 × さおり</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>-2 × さおり</td>
<td>65</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>-3 × さおり</td>
<td>39</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>-4 × さおり</td>
<td>89</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>-5 × さおり</td>
<td>210</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>-6 × さおり</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-7 × さおり</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-8 × さおり</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-9 × さおり</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-10 × さおり</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-11 × さおり</td>
<td>21</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-12 × さおり</td>
<td>128</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>-13 × さおり</td>
<td>890</td>
<td>73</td>
<td>11</td>
</tr>
<tr>
<td>BC$_2$-25-1 × さおり</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-2 × さおり</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-3 × さおり</td>
<td>62</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>-4 × さおり</td>
<td>48</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>-5 × さおり</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

計 | 1632 | 119 | 20 |

a) 1993年7〜12月、富雄PB-6-15-9囲楼。栽培は25〜28℃で温室内東京都農業試験場ガラスハウス内。

図5 戻し交雑第2代の選抜系統（BC$_2$-7-1S系統）

BC$_2$-4・1S系で2個体、7・1Sで13個体。7・2Sで5個体が抵抗性を示し、これら20個体を選抜した（図5）。これらのうち生育の旺盛なものは、2n=25〜27の高次異数体であった。

（3）戻し交雑第3代（BC$_3$）におけるコマツナ型従帰植物の選抜

選抜したBC$_2$系統20個体と「さおり」との交雑による採種粒数と萎黄病検定の結果を表5に示した。交雑は、各組み合わせで200〜500花について行なったが、採種量が0〜数粒程度のものが多かった。採種した種子1,632粒はすべて播種し、萎黄病検定に供した。その結果、119個体（7.3%）が抵抗性を示し、その中から20個体を選抜した。選抜個体の染色体数（2n）は20〜24で、コマツナ型従帰植物（2n=20）は11個体確認された（表6）。花粉管微細第一分裂期（ME）の染色体は、コマツナ型従帰植物にあっても、三価などの多価対合や非同調的な染色体分離が観察された（図6）。また、アイソザイム分析では、B. campestrisに存在しないバンドパターンを示すものがあった。このような現象は、異種ゲノムの遺伝的交換の結果として生じるものと考えられる。一方、染色体の多価対合や非同調分離は、
復帰型植物の遺伝的な不安定さを示唆しており、以後の選抜で考慮する必要があると考えられた。
(4) コマツナ型復帰植物の検定結果
選抜した BC₃ は、感受性品種を戻し交雑しているので、キャベツの萎黄病抵抗性遺伝子をヘテロの状態で保有し、自殖で、抵抗性: 感受性 = 3:1、感受性品種との交雑で同1:1に分離すると考えられた。そこで、自殖または「さおり」を交雑し、萎黄病検定に供した。萎黄病検定は人工気象室内で行い、菌株接種後、5月と6月に各株に接種後、28℃に保たれた。

III. 自家受精による萎黄病抵抗性および実用価値の固定

1. 材料および方法

表 6 戻し交雑第3代 (BC₃) の萎黄病検定および形態による選抜個体の遺伝的特徴

<table>
<thead>
<tr>
<th>BC₃個体</th>
<th>練</th>
<th>染色体数</th>
<th>アイソザイムバンド</th>
<th>形質の特徴</th>
<th>再選抜</th>
</tr>
</thead>
<tbody>
<tr>
<td>BC₃-1</td>
<td>2n</td>
<td>C2 K6 K7 K8 C3 new</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 2</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 3</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 4</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 5</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 6</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 7</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 8</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- 9</td>
<td></td>
<td></td>
<td>+ + + + +</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表6 に示すように、染色体数が2nの個体は、アイソザイムバンドのパターンがBC₃-1と同様であり、高い抵抗性を示す。形質の特徴は、萎黄病抵抗性、株立ち直り、生育遅延など多様で、実用価値が高い。これにより、選抜した個体は、繁殖系としての可能性を示している。

図6 コマツナ型復帰植物 (BC₃, 2n=20) の花粉母細胞成熟分裂 (M1)

図7 抽い出し株 (花茎) への接木による稲本の開花促進
2. 結果および考察
(1) 壱黄病抵抗性の遺伝的固定系統の選抜
抵抗性固定系統を選抜するため、自殖第2代（S₂BC₃）を用い、その自殖世代および「さおり」との交雑によって得た世代を、1999年に播種して壊黄病検定に供した。
S₂BC₃の自殖後代における壊黄病検定の結果を表8に示した。検定では、市販の抵抗性品種「ななみ小松菜、ひとみ小松菜」（（株）トーホー、以下それぞれ「ななみ、ひとみ」と表記）の発病率が15%以上となる一方で、育成系統の発病率は総じて低かった。発病が無いか、あっても極めて低い系統は、S₂BC₃の後代における分離がなく、壊黄病抵抗性が遺伝的に固定したものと見なされた。
次に、「さおり」との交雑後代の検定結果を表9に示した。平均温度が34℃と高く推移したため、対照の「ななみ」で発病率70%以上、発病度45、「ひとみ」で発病率100%、発病度70以上となった。その中で、市販の抵抗性品種よりも発病の少ない系統

<table>
<thead>
<tr>
<th>表7 BC₃の壊黄病抵抗性についての検定交雑a)</th>
</tr>
</thead>
<tbody>
<tr>
<td>交雑組合せ</td>
</tr>
<tr>
<td>BC₃-10 × さおり</td>
</tr>
<tr>
<td>BC₃-11 × さおり</td>
</tr>
<tr>
<td>BC₃-11 × BC₃-11</td>
</tr>
<tr>
<td>BC₃-12 × さおり</td>
</tr>
<tr>
<td>BC₃-12 × BC₃-12</td>
</tr>
<tr>
<td>BC₃-13 × さおり</td>
</tr>
<tr>
<td>BC₃-13 × BC₃-13</td>
</tr>
<tr>
<td>BC₃-14 × さおり</td>
</tr>
<tr>
<td>BC₃-14 × BC₃-14</td>
</tr>
<tr>
<td>BC₃-15 × さおり</td>
</tr>
<tr>
<td>BC₃-15 × BC₃-15</td>
</tr>
<tr>
<td>BC₃-16 × さおり</td>
</tr>
<tr>
<td>BC₃-16 × BC₃-16</td>
</tr>
<tr>
<td>BC₃-17 × さおり</td>
</tr>
<tr>
<td>BC₃-17 × BC₃-17</td>
</tr>
<tr>
<td>BC₃-18 × さおり</td>
</tr>
<tr>
<td>BC₃-18 × BC₃-18</td>
</tr>
<tr>
<td>BC₃-19 × さおり</td>
</tr>
<tr>
<td>BC₃-19 × BC₃-19</td>
</tr>
<tr>
<td>対照(さおり)</td>
</tr>
</tbody>
</table>

a) 1994年、東京都農試験場人工気温室で検定。
b) 壊黄病感性系統の播種後3週間後の発病率は、ほぼ28℃で推移。壊黄病感性系統「さおり」が100%発病した時点で調査を実施。
c) ○：期待値に適合するもの。●：期待値に適合しないが抵抗性が強いもの
(S_{2}BC_{3}•13·8·8, 10, 15, 18) は、片親として用いた場合にも実用的な抵抗性を発揮すると考えられ
(2)生育特性
同種の自殖第2代の種子をガラスハウス内に播種
(1999年8月4日) と、8月31日に生育形態等の特性を検討した(表10)。育成系統の生育は緩やかで
草葉はやや開張性であった。葉色は濃い方であ
たが一部に軽微なクロロシスを認められ、光
沢はやや少なかった。葉の凹凸や曲形も認められ
一方、下胚軸や節間は徒長せず、株元が整っていた。
一般に、萎黄病に強い市販品種は、根系が強くなる傾向があったが、育成系統の根は細く、細根が少
いため抜き取り易く、土の付着が少なかった。夏ま
き用種に求められる条件をすべて満たす系統は見
あたりなかったが、品質に影響する主要な形質であ
る胚軸・節間長、葉色、草葉を検討した結果、
S_{2}BC_{3}•13·8·7, 17, 18 が有望と判断された。
(3)根こぶ病検定
自殖第2代の根こぶ病発生状況を1999年12月
15日に調査した。市販品種では「河北」で発病が
認められなかったが、「夏楽天」は3品種は、発病
株率5%以上、発病度5程度となった(表11)。育
成系統では、萎黄病抵抗性の優れたS_{2}BC_{3}•13·8·10
で発病が認められたのに対し、S_{2}BC_{3}•13·8·17, 18
では認められなかった。育成系統での発病の様子や
やS_{2}BC_{3}•13·11 ×「夏楽天」が発病しなかったこと
などから、S_{2}BC_{3}•13·8·17, 18 は、根こぶ病に対す
る一定の抵抗性をホモの状態で保有すると考えられ
た。なお、本根こぶ病のレース確認やその後の検定
は行っていない。
(4)自殖による純系の育成
以上の萎黄病検定、生育特性、根こぶ病検定の結
果を総合すると、S_{2}BC_{3}•13·8·18 が有望と考えられ

<table>
<thead>
<tr>
<th>系統・品種</th>
<th>交雑組み合わせ</th>
<th>発病株率</th>
<th>激発株率</th>
<th>発病度</th>
<th>遺伝的固定</th>
</tr>
</thead>
<tbody>
<tr>
<td>S_{2}BC_{3}•13·8·8</td>
<td>44.4</td>
<td>22.2</td>
<td>35.4</td>
<td>×</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>自殖</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>自殖</td>
<td>7.8</td>
<td>3.8</td>
<td>6.4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>自殖</td>
<td>3.7</td>
<td>0.0</td>
<td>2.5</td>
<td>○</td>
</tr>
<tr>
<td>4</td>
<td>自殖</td>
<td>17.9</td>
<td>3.6</td>
<td>13.1</td>
<td>×</td>
</tr>
<tr>
<td>5</td>
<td>自殖</td>
<td>11.1</td>
<td>3.7</td>
<td>8.6</td>
<td>×</td>
</tr>
<tr>
<td>6</td>
<td>自殖</td>
<td>6.9</td>
<td>0.0</td>
<td>3.4</td>
<td>○</td>
</tr>
<tr>
<td>7</td>
<td>自殖</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>○</td>
</tr>
<tr>
<td>8</td>
<td>自殖</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>○</td>
</tr>
<tr>
<td>9</td>
<td>自殖</td>
<td>12.8</td>
<td>13.8</td>
<td>13.8</td>
<td>×</td>
</tr>
<tr>
<td>10</td>
<td>自殖</td>
<td>38.5</td>
<td>11.5</td>
<td>25.6</td>
<td>×</td>
</tr>
<tr>
<td>11</td>
<td>自殖</td>
<td>10.7</td>
<td>3.6</td>
<td>8.3</td>
<td>×</td>
</tr>
<tr>
<td>12</td>
<td>自殖</td>
<td>3.4</td>
<td>3.4</td>
<td>3.4</td>
<td>○</td>
</tr>
<tr>
<td>13</td>
<td>自殖</td>
<td>3.7</td>
<td>3.7</td>
<td>3.7</td>
<td>○</td>
</tr>
<tr>
<td>14</td>
<td>自殖</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>○</td>
</tr>
<tr>
<td>15</td>
<td>自殖</td>
<td>6.7</td>
<td>0.0</td>
<td>3.3</td>
<td>○</td>
</tr>
</tbody>
</table>

(対照品種)

<table>
<thead>
<tr>
<th>品種</th>
<th>発病株率</th>
<th>激発株率</th>
<th>発病度</th>
</tr>
</thead>
<tbody>
<tr>
<td>さより</td>
<td>100.0</td>
<td>78.5</td>
<td>91.6</td>
</tr>
<tr>
<td>ながもみ</td>
<td>85.0</td>
<td>5.0</td>
<td>56.7</td>
</tr>
<tr>
<td>よかった菜</td>
<td>78.9</td>
<td>42.1</td>
<td>64.9</td>
</tr>
<tr>
<td>菓茶2号</td>
<td>73.7</td>
<td>15.8</td>
<td>47.4</td>
</tr>
<tr>
<td>極楽天</td>
<td>30.0</td>
<td>10.0</td>
<td>20.0</td>
</tr>
<tr>
<td>なをみ(YR)</td>
<td>23.5</td>
<td>0.0</td>
<td>15.7</td>
</tr>
<tr>
<td>ひょう(YR)</td>
<td>15.0</td>
<td>5.0</td>
<td>11.7</td>
</tr>
</tbody>
</table>

a) 1996年6月発気軽(PB9675P)接種。7月21日調査。発病株率±2(陽性検定×3検出数)/(X
調査植)×100。発病株率(無発病)3(無発病検定。発病株検査後の温度は25〜30°C(東京都農業試験場江戸川分場ガラスハウス内)
たが、萎黄病抵抗性が特に優れる S₂BC₃'13·8·10 と併せて選抜した。
2000 年 9 月に、S₂BC₃'13·8·18 の次代、S₂BC₃'46 を供試し、紫外線カットフィルム被膜下での生育特性を検討した（表 12）。なお、対照品種はすべて F₁ 品種である。その結果、S₂BC₃'46 は、夏まきや紫外線透過率の低い栽培条件下で問題となる下胚軸・節間の後長、葉色/葉長比の低下（葉柄の徒長）、葉色低下はいずれも小さく、S₂BC₃'13·8·18 の特性が引き続き考えられた。また、形態の分離も少なく、固定化の進んだことが明らかになった。

Ⅳ．組み合わせ能力検定による「YR 江戸川」と F₁ 品種「01 試交 12」の育成

1. 材料および方法
組織合わせ能力の高い S₂BC₃ 系統の選抜を図るため、2001 年の春に、S₂BC₃'13·8·10、18 に由来する S₂BC₃ 世代 25 系統と市販品種の自殖後代から選抜した HT-S₄ 系 3 系統との間で、52 組み合わせの交雑を行った。なお、HT-S₄ 系統の育成は次のようにした。すなわち、1999 年 5 月に、市販品種「ひとま」との自殖を行い、以後、幼苗期に葉色および胚軸・節間長を検討して S₃ 系統を選抜し、その選抜実生を、低温処理により事前に摂いたしておいた別株に接木することによって開花を早め世代を進め（図 7）。これと並行して、後代検定により蓄積や稲面の平滑さについて検討した。これらを反復することで、2001 年 1 月までに自殖第 4 代を選抜育成した。HT-S₄ 系統については、S₄BC₃との交雑に際しても、接ぎ木による開花促進法を用いた。

組み合わせ能力検定は、2001 年 6 月 15 日播種（ハウス栽培）、7 月 12 日および 7 月 17 日調査とした。栽培管理は慣行法に従った。さらに、組み合わせ検定によって有望と考えられた試交品種を、同年 9 月 14 日、紫外線カットフィルムを被覆したハウス内に播種し、10 月 11 日に生育特性を調査した。

表 9 自殖第 2 (S₂BC₃) × さおり小松菜の後代における萎黄病検定a)

<table>
<thead>
<tr>
<th>系統・品種</th>
<th>交雑組合せ</th>
<th>発病株率</th>
<th>暴発株率</th>
<th>発病度</th>
<th>評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>S₂BC₃'13·8·10</td>
<td>さおり</td>
<td>100</td>
<td>89.5</td>
<td>89.5</td>
<td>○</td>
</tr>
<tr>
<td>2</td>
<td>さおり</td>
<td>95.8</td>
<td>75.0</td>
<td>81.1</td>
<td>○</td>
</tr>
<tr>
<td>3</td>
<td>さおり</td>
<td>95.2</td>
<td>71.4</td>
<td>80.4</td>
<td>○</td>
</tr>
<tr>
<td>4</td>
<td>さおり</td>
<td>100</td>
<td>75.0</td>
<td>81.3</td>
<td>○</td>
</tr>
<tr>
<td>6</td>
<td>さあまり</td>
<td>90.4</td>
<td>57.1</td>
<td>71.4</td>
<td>○</td>
</tr>
<tr>
<td>7</td>
<td>さあまり</td>
<td>95.8</td>
<td>58.3</td>
<td>75.0</td>
<td>○</td>
</tr>
<tr>
<td>8</td>
<td>さあまり</td>
<td>76.7</td>
<td>33.3</td>
<td>50.8</td>
<td>○</td>
</tr>
<tr>
<td>9</td>
<td>さあまり</td>
<td>89.7</td>
<td>41.4</td>
<td>65.9</td>
<td>○</td>
</tr>
<tr>
<td>10</td>
<td>さあまり</td>
<td>65.5</td>
<td>13.8</td>
<td>36.6</td>
<td>○</td>
</tr>
<tr>
<td>11</td>
<td>さあまり</td>
<td>100</td>
<td>52.4</td>
<td>74.4</td>
<td>○</td>
</tr>
<tr>
<td>12</td>
<td>さあまり</td>
<td>96.4</td>
<td>75.0</td>
<td>81.7</td>
<td>○</td>
</tr>
<tr>
<td>13</td>
<td>さあまり</td>
<td>90.0</td>
<td>56.7</td>
<td>67.5</td>
<td>○</td>
</tr>
<tr>
<td>14</td>
<td>さあまり</td>
<td>92.9</td>
<td>42.9</td>
<td>61.6</td>
<td>○</td>
</tr>
<tr>
<td>15</td>
<td>さあまり</td>
<td>84.2</td>
<td>36.8</td>
<td>57.9</td>
<td>○</td>
</tr>
<tr>
<td>17</td>
<td>さあまり</td>
<td>96.7</td>
<td>63.3</td>
<td>75.8</td>
<td>○</td>
</tr>
<tr>
<td>18</td>
<td>さあまり</td>
<td>82.8</td>
<td>31.0</td>
<td>56.9</td>
<td>○</td>
</tr>
</tbody>
</table>

(a) 1999年7月調査 (P967SF) 被膜、8月25日調査、発病度=Σ(発病株数×発病株数)/(全体株数×20株数) ±100。除病株(無発病)～4(極光)。
園枯病検定後の発病率 23～37℃。東京都農業試験場戸川分場ガラシャハウス内。
表10 自貫第2代（S_BC_C-13-8）系統における生育特性^a

<table>
<thead>
<tr>
<th>系統</th>
<th>草丈（cm）</th>
<th>幼雛重（g）</th>
<th>茎萎+穂開長（cm）</th>
<th>穂数</th>
<th>被身率（%）</th>
<th>輪形</th>
<th>葉の色<sup>b</sup></th>
<th>葉の光沢<sup>c</sup></th>
<th>被る横曲<sup>d</sup></th>
<th>坊名<sup>e</sup></th>
<th>評価</th>
</tr>
</thead>
<tbody>
<tr>
<td>S<sub>B</sub>C<sub>C</sub>-13-8-1</td>
<td>22.8</td>
<td>12.6</td>
<td>3.1</td>
<td>0.18</td>
<td>6.9</td>
<td>48</td>
<td>5</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>-2</td>
<td>26.0</td>
<td>16.7</td>
<td>2.7</td>
<td>0.18</td>
<td>7.4</td>
<td>50</td>
<td>丸</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>-3</td>
<td>23.4</td>
<td>15.8</td>
<td>2.5</td>
<td>0.19</td>
<td>7.7</td>
<td>55</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>-4</td>
<td>24.2</td>
<td>14.8</td>
<td>2.7</td>
<td>0.15</td>
<td>8.0</td>
<td>52</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
</tr>
<tr>
<td>-6</td>
<td>23.6</td>
<td>13.9</td>
<td>2.4</td>
<td>0.16</td>
<td>7.9</td>
<td>51</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>4.4</td>
<td>4</td>
</tr>
<tr>
<td>-7</td>
<td>24.5</td>
<td>18.3</td>
<td>1.5</td>
<td>0.24</td>
<td>7.4</td>
<td>54</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>4</td>
<td>3.2</td>
</tr>
<tr>
<td>-8</td>
<td>24.1</td>
<td>16.8</td>
<td>2.1</td>
<td>0.19</td>
<td>8.3</td>
<td>53</td>
<td>丸</td>
<td>2</td>
<td>2</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>-9</td>
<td>25.4</td>
<td>15.4</td>
<td>2.4</td>
<td>0.18</td>
<td>7.4</td>
<td>54</td>
<td>5</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>-10</td>
<td>22.4</td>
<td>12.4</td>
<td>2.2</td>
<td>0.14</td>
<td>7.6</td>
<td>46</td>
<td>さお长</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>-11</td>
<td>23.8</td>
<td>14.2</td>
<td>2.4</td>
<td>0.14</td>
<td>7.1</td>
<td>52</td>
<td>丸</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>-12</td>
<td>22.6</td>
<td>14.7</td>
<td>2.7</td>
<td>0.21</td>
<td>7.6</td>
<td>51</td>
<td>丸</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>-13</td>
<td>23.6</td>
<td>12.7</td>
<td>2.6</td>
<td>0.18</td>
<td>6.6</td>
<td>53</td>
<td>丸</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>-14</td>
<td>23.1</td>
<td>13.6</td>
<td>2.4</td>
<td>0.18</td>
<td>7.8</td>
<td>50</td>
<td>さお長</td>
<td>3</td>
<td>2</td>
<td>3.5</td>
<td>3</td>
</tr>
<tr>
<td>-15</td>
<td>24.0</td>
<td>16.4</td>
<td>2.4</td>
<td>0.18</td>
<td>8.5</td>
<td>52</td>
<td>丸</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td>4.5</td>
</tr>
<tr>
<td>-17</td>
<td>23.1</td>
<td>15.1</td>
<td>2.6</td>
<td>0.16</td>
<td>7.8</td>
<td>50</td>
<td>さお長</td>
<td>4</td>
<td>3</td>
<td>3.5</td>
<td>2</td>
</tr>
<tr>
<td>-18</td>
<td>23.6</td>
<td>14.2</td>
<td>1.9</td>
<td>0.16</td>
<td>7.8</td>
<td>50</td>
<td>さお長</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

（対照品種）
さよおり：26.1 | 16.5 | 3.7 | 0.18 | 7.3 | 43 | 丸 | 3 | 3 | 3.5 | 4 | 2
あゆみ：27.9 | 21.1 | 4.8 | 0.26 | 7.4 | 47 | 丸 | 3 | 3 | 4 | 3.5 | 3 | 3
ひとみ：23.3 | 13.0 | 3.8 | 0.23 | 7.5 | 44 | さお长 | 5 | 4 | 5 | 3 | 5
夏楽天：26.8 | 14.1 | 3.3 | 0.26 | 6.5 | 50 | さお长 | 2 | 3 | 4 | 3 | 5

表11 選抜系_统S_BC_Cの根こぶ病検定^a

系統・品種	調査対象数	階級値^b	発病率	発病度^c				
(鈍当数)（％）		0 1 2 3						
S_BC_C-13-8-10	35	35	34	1	0	0	2.9	1.0
-17	35	35	35	0	0	0	0.0	0.0
-18	35	35	35	0	0	0	0.0	0.0
夏楽天	35	35	33	0	0	2	5.7	5.7
さよおり	35	35	33	0	1	1	5.7	4.8
ひとみ	35	35	33	0	1	1	5.7	4.8
わかみ	35	35	32	0	2	1	8.6	6.7
CR河北	35	35	35	0	0	0	0.0	0.0
S_BC_C-13-11×夏楽天	35	35	35	0	0	0	0.0	0.0

a) 1999年10月12日に観察。12月15日に観察。東京都内根こぶ病発生状況。
b) 階級値（1:根腐病なし）～（2:根腐病）～（3:根腐病増大）。
c) 発病度（％）を（鈍当数×調査対象数）/(鈍当数×調査対象数)×100。
表12 紫外線カットフィルム被覆下のハウス栽培におけるS下BC46の生育

<table>
<thead>
<tr>
<th>品種・系統</th>
<th>草丈 (cm)</th>
<th>株重 (g)</th>
<th>下駄軸長 (cm)</th>
<th>節間長 (cm)</th>
<th>葉数 (枚)</th>
<th>葉身/葉長 (%)</th>
<th>柄幅/葉身 (%)</th>
<th>葉色</th>
</tr>
</thead>
<tbody>
<tr>
<td>彩夏</td>
<td>20.9</td>
<td>10.8</td>
<td>1.5</td>
<td>0.8</td>
<td>5.6</td>
<td>50.2</td>
<td>79.2</td>
<td>43.4</td>
</tr>
<tr>
<td>さおり</td>
<td>23.8</td>
<td>14.2</td>
<td>2.1</td>
<td>0.8</td>
<td>6.1</td>
<td>50.0</td>
<td>79.5</td>
<td>39.9</td>
</tr>
<tr>
<td>夏楽天</td>
<td>23.8</td>
<td>11.3</td>
<td>2.4</td>
<td>1.0</td>
<td>5.2</td>
<td>56.3</td>
<td>68.5</td>
<td>36.0</td>
</tr>
<tr>
<td>小鉄</td>
<td>23.4</td>
<td>18.8</td>
<td>2.2</td>
<td>1.2</td>
<td>6.9</td>
<td>53.4</td>
<td>75.0</td>
<td>50.4</td>
</tr>
<tr>
<td>なっちゃん</td>
<td>21.8</td>
<td>14.5</td>
<td>1.1</td>
<td>0.6</td>
<td>5.9</td>
<td>53.6</td>
<td>75.0</td>
<td>46.5</td>
</tr>
<tr>
<td>なつみ</td>
<td>24.5</td>
<td>12.6</td>
<td>2.0</td>
<td>1.0</td>
<td>5.4</td>
<td>50.8</td>
<td>79.3</td>
<td>38.0</td>
</tr>
<tr>
<td>榮ちゃん</td>
<td>23.3</td>
<td>20.3</td>
<td>1.7</td>
<td>0.9</td>
<td>6.9</td>
<td>54.9</td>
<td>78.0</td>
<td>50.1</td>
</tr>
<tr>
<td>滅美2号</td>
<td>25.0</td>
<td>14.8</td>
<td>1.1</td>
<td>1.1</td>
<td>5.8</td>
<td>51.0</td>
<td>77.2</td>
<td>42.6</td>
</tr>
<tr>
<td>ひとみ</td>
<td>23.4</td>
<td>12.0</td>
<td>1.7</td>
<td>1.4</td>
<td>6.1</td>
<td>50.0</td>
<td>67.0</td>
<td>44.7</td>
</tr>
<tr>
<td>よかった菜</td>
<td>25.5</td>
<td>21.2</td>
<td>1.9</td>
<td>0.7</td>
<td>6.9</td>
<td>49.8</td>
<td>79.0</td>
<td>40.2</td>
</tr>
<tr>
<td>わかみ</td>
<td>26.1</td>
<td>23.1</td>
<td>1.0</td>
<td>1.0</td>
<td>7.1</td>
<td>50.8</td>
<td>78.7</td>
<td>40.6</td>
</tr>
<tr>
<td>S下BC46</td>
<td>20.5</td>
<td>12.0</td>
<td>0.9</td>
<td>0.6</td>
<td>6.3</td>
<td>57.7</td>
<td>69.0</td>
<td>45.2</td>
</tr>
</tbody>
</table>

a) 紫外線透過率約7% b) 2000年9月14日種植。調査日：彩夏、さおり、夏楽天9/26、小鉄、なっちゃん、なつみ：CM-1（9/28）、滅美2号、ひとみ、よかった菜、わかみ、S下BC46（9/29）

表13 コマツナ育成系統の組み合わせ能力検定

<table>
<thead>
<tr>
<th>系統・品種</th>
<th>組み合わせ</th>
<th>草丈 (cm)</th>
<th>株重 (g)</th>
<th>下駄軸長 (cm)</th>
<th>節間長 (cm)</th>
<th>葉数 (枚)</th>
<th>葉身/葉長 (%)</th>
<th>柄幅/葉身 (%)</th>
<th>葉色</th>
</tr>
</thead>
<tbody>
<tr>
<td>01試験8</td>
<td>EC23-1×HT4-11</td>
<td>22.3</td>
<td>17.6</td>
<td>1.5</td>
<td>0.6</td>
<td>8.8</td>
<td>0.45</td>
<td>0.73</td>
<td>51.8</td>
</tr>
<tr>
<td>01試験9</td>
<td>EC23-1×HT4-12</td>
<td>21.9</td>
<td>20.1</td>
<td>1.5</td>
<td>0.6</td>
<td>8.7</td>
<td>0.53</td>
<td>0.74</td>
<td>54.7</td>
</tr>
<tr>
<td>01試験10</td>
<td>EC23-1×HT5-11</td>
<td>22.4</td>
<td>18.0</td>
<td>1.9</td>
<td>0.6</td>
<td>7.9</td>
<td>0.50</td>
<td>0.72</td>
<td>56.0</td>
</tr>
<tr>
<td>01試験11</td>
<td>EC25-1×HT4-11</td>
<td>20.9</td>
<td>15.3</td>
<td>1.4</td>
<td>0.5</td>
<td>8.4</td>
<td>0.48</td>
<td>0.73</td>
<td>54.7</td>
</tr>
<tr>
<td>01試験12</td>
<td>EC25-1×HT4-12</td>
<td>20.5</td>
<td>12.8</td>
<td>1.3</td>
<td>0.6</td>
<td>7.7</td>
<td>0.51</td>
<td>0.71</td>
<td>54.5</td>
</tr>
<tr>
<td>01試験13</td>
<td>EC25-1×HT5-11</td>
<td>21.8</td>
<td>15.6</td>
<td>1.3</td>
<td>0.7</td>
<td>7.9</td>
<td>0.51</td>
<td>0.63</td>
<td>53.6</td>
</tr>
<tr>
<td>01試験14</td>
<td>EC25-5×HT4-11</td>
<td>19.5</td>
<td>14.4</td>
<td>2.0</td>
<td>0.6</td>
<td>8.5</td>
<td>0.52</td>
<td>0.71</td>
<td>58.7</td>
</tr>
<tr>
<td>01試験15</td>
<td>EC25-5×HT4-12</td>
<td>21.0</td>
<td>16.1</td>
<td>1.9</td>
<td>0.8</td>
<td>8.4</td>
<td>0.50</td>
<td>0.69</td>
<td>59.0</td>
</tr>
<tr>
<td>01試験16</td>
<td>EC25-5×HT5-11</td>
<td>24.4</td>
<td>19.3</td>
<td>2.0</td>
<td>1.1</td>
<td>8.5</td>
<td>0.48</td>
<td>0.63</td>
<td>55.2</td>
</tr>
<tr>
<td>夏楽天</td>
<td>24.3</td>
<td>16.2</td>
<td>2.2</td>
<td>0.9</td>
<td>6.8</td>
<td>0.54</td>
<td>0.59</td>
<td>50.4</td>
<td></td>
</tr>
<tr>
<td>ひとみ</td>
<td>21.2</td>
<td>13.5</td>
<td>2.0</td>
<td>1.0</td>
<td>7.4</td>
<td>0.50</td>
<td>0.64</td>
<td>55.6</td>
<td></td>
</tr>
<tr>
<td>彩夏</td>
<td>22.2</td>
<td>19.5</td>
<td>2.2</td>
<td>1.0</td>
<td>8.3</td>
<td>0.49</td>
<td>0.72</td>
<td>56.9</td>
<td></td>
</tr>
<tr>
<td>よかった菜</td>
<td>19.1</td>
<td>12.7</td>
<td>1.9</td>
<td>0.5</td>
<td>6.7</td>
<td>0.47</td>
<td>0.80</td>
<td>58.6</td>
<td></td>
</tr>
</tbody>
</table>

a) 2001年6月15日播種。東京都農業試験場江戸川分場バイオハウス内。
b) ～d) 表12と同じ。
図8 育成品種及び主要品種の草姿
（ハウス栽培、2001年6月15日播種、7月17日撮影）
①おちゃん、②01試交12、③彩夏、④ひとみ、⑤なっちゃん、⑥亀美2号

図9 01試交12および対象品種の紫外線カットフィルム下での生育
（2001年9月14播種、10月11日撮影）

2 結果および考察

（1）組み合わせ能力検定と試交品種の特性

52の交雑組み合わせのうち、S_{4}BC_{3}・13・8・10の後代系統を交雑したものは、草姿や葉の形状からみて、明らかに夏まきに向かないと判断されたため、調査は、S_{4}BC_{3}・13・8・18に由来する3系統（EC23・1、25・1、26・5）とHT-S_{4}系3系統（HT-S_{4}・4・11、4・12、5・11）との交雑組み合わせについて行った（表13）。

このうち、EC23・1を用いた組み合わせでは、葉数が多く株張りが良好であったが、葉幅が広く、細根が多いなどの欠点があった。EC26・5によるものでは、葉色が濃くなる長所があるものの、下胚軸や節間が長くなる欠点が認められた。そのため、S_{4}BC_{3}
の3系統の中では、問題点の少ないEC25・1が有望と考えられた。一方、HT-S_{4}系系統を検討したところ、5・11では下胚軸や節間が長くなった。さらにHT4・11と4・12を比較すると、前者では、株張りが良好になる反面、葉がやや開き気味となる欠点があるので、HT4・12が有望と判断された。EC25・1と

-14-
図10 コマツナ交配母本‘YR江戸川’(EC25-1)

図11 ‘YR江戸川’の育成系統図

図12 F1品種‘01試交12’の育成系統図
HT4・12の交雑による01試交12の草姿を図8に示した。

次に、01試交12を用い、紫外線カットフィルム被覆下における生育特性を検討した（表14、図9）。下胚軸や節間は、対照品種に較べて従来しにくく、株振りや株重が良好であった。また、葉色はやや深く、根養分が蓄積が多く、これらの特性は実用上の問題のない程度と考えられた。このことから、01試交12は、夏まきや紫外線カットフィルム利用のハウス栽培に適すると考えられた。

(2)交配母本‘YR江戸川’およびF1品種‘01試交12’の品種録
以上の結果を踏まえ、萎黄病抵抗性で交配母本としての能力が実証されたEC25-1を選抜した。さらに、ミツバチやハナアブが訪花する条件で自家受精しなければ確認し、EC25-1を‘YR江戸川’と命名し、2003年5月に農水省水産省品種録登録申請をした（図10、11）。一方、01試交12についても一定の実用性が確認されたため、同年7月に品種録登録を出願した（図12）。

V.総合考察

1. ‘YR江戸川’の萎黄病抵抗性
コマツナでは、民間種苗メーカーによる萎黄病抵抗性品種や耐性品種が開発されている。これらは、自殖後代で萎黄病発生率が低くなることから（表9）、実的な遺伝子が関与しているものと推定される。これに対し、‘YR江戸川’の抵抗性は、ほぼ、単一の優性遺伝子によって支配されていると考えられ、抵抗性の程度も高度であることから、新素材としての活用が期待される。一方、コマツナと同じB. campestrisに属するハクサイで、単一の優性遺伝子による抵抗性が報告されているが（野村・石井、1989b）、キャベツtype A抵抗性との関係について、今後、解明が望まれる。

なお、長年にわたって安定した抵抗性を発揮してきたキャベツtype A抵抗性を有するレースが、アメリカで報告されている（Ramirez-Villupuda、1985）。我が国では、新レースによる被害の報告はまだいないが、今後の動向に注目を要する。

2. ‘YR江戸川’の根こぶ病抵抗性
‘YR江戸川’は、その育成過程で実施した根こぶ病検定の結果から、同病に対する抵抗性を有することが認められた。しかし、根こぶ病菌のレース判定を行っていないこと、その後の検定を実施していないこと、夏まき栽培では根こぶ病発生しないことなどの理由により、‘YR江戸川’を複合抵抗品種としては標記しなかった。

なお、長野県野菜栽培試験場から譲り受けたタアジサイ‘76S’については、その育成経過は公にされていないが、タアジサイ‘長野秋4号’（野沢ら、1994）と同様に、欧州カプ‘Gelria R’に由来する根こぶ病抵抗性が導入されているものと考えられる。

3. ‘YR江戸川’の形態的特性
東京都では、植付けの経過出荷（通常400〜500g/束）が行われており、荷姿は商品性を左右する重要な項目になっている。夏まき栽培では、胚軸や縦間の発達による株数の曲がり・軽い生が生じ、葉色は薄くなり易い。また、生育が早まることにより、収穫期適期を逃す場合がある。‘YR江戸川’は、胚軸や縦間が生長しにくく、葉色が濃く、生育が遲やかな
どの夏までに適した特長を有している。さらに、本品種は、細根が少なく、育期が短いので、根部の土壌の心なき長さである。

一方、欠点は、栽培条件によって、葉の薄さ、硬さがみられることがあり、現在の主品種と比較して草姫が開発する傾向にある。薄葉した葉の、収穫の際は、地元の第に互いに縛り合い、収穫・束包作業をしがちにするするためである。

以上のことを考え、本品種を交流相として利用する場合、収穫の適時に、細根の葉数を増やし、根部の細根の少ないことにより、不和成性を引き強がること（木村・生井，1979）や、育成性の低いこと（岩佐・増，1979）が報告されているが、本研究所で作成した二倍体（P₁ No. 16. 27）は、収穫性を自殖で十分に観察されている。

一方、BC₃（2n=20）世代以降の自殖においては、系統により程度の差があったが、藤原と異株間の交雑によっても発芽が容易でなかった。実験、BC₃からS₃BC₃世代を育成するまでに4年を要した。ところが、2001年～2002年に、'01試交12'の交雑種を目的として、マルナハバチを用いたところ、'Y R江戸川'の自殖種子が20％程度と、高い割合で混入した。これは、限定された花期や栽培法を増えての性質を持つマルナハバチによって、柱頭-花粉間の不和性機構を低下させる柱頭切除および強制受精に類似した現象が発生したためと考えられる。このことから、自殖不和性を打破する種々の方法（日向・西尾，1979）を併用することで、自殖種子の採種性を高める可能性がある。

なお、'Y R江戸川'は純系化を図っているが、採種の際には、異株間における不和性性の確認が不可欠である。

5. '01試交12'の特性

交流相本の特性を把握するためには、組み合わせ能力検定は不可欠である。'01試交12'は、そうした組み合わせ能力検定の過程で作成された交雑種であるが、紫外線カットフィルム被覆下の夏のハウス栽培において、軟弱徒長しにくく、品質が優れることが判明されたため、実用化に向けた検討を開始した。ただし、今後、'Y R江戸川'を民間の選抜種として、より優れたF₃品種の開発が期待されることで、本品種は、それまでの選択的な役割を期待している。

なお、'01試交12'の茎葉病抵抗性については、市販抵抗性品種の発病率が100％となった条件下でも発病が認められず、高度な抵抗性を発揮することが確認されている（竹内，2002，未発表）。「ひとき」の自殖世代で茎葉病抵抗性が高まるように（表9），自殖第4代のHT4-12は「ひとき」の抵抗性因子が集積していると考えられることから、その交雑種である'01試交12'は、複合的な茎葉病抵抗性材料としての用途も期待できる。

6. 複二倍体F₁を用いた形質導入ならびに単ゲノム種帰復植物の遺伝的安定性

異種ゲノム間における形質導入は、異種染色体同士の相合とそれによる転座によって行われる。こうした異種相合は、野生のゲノム構成と無制限の相合があり、生井（1976）は、複数表体（rcおよびacゲノム）やその後代で異種相合の生じやすいこと、一方、金子ら（1987）は、複二倍体（rrceゲノム）で異種相合の生じにくいことを示している。このことから、形質導入を図る場合には、複数表体F₁植物の利用が妥当とされている。この研究では、複数表体F₁を出発点とした場合、BC₁は得られてものの、その後代BC₂（F₃に相当）は得られなかった。そこで、複二倍体Fᵢを出発点として、二倍体複合体BC₁、異種複合体BC₂を出発点として、BC₃世代で茎葉病抵抗性を有するコマツナ型帰復植物を得た。その獲得効率が高いか低いかは判断できないが、複二倍体F₁に始まる場合も、その後の異種複合体を経過するなかで異種相合が生ずるため、形質導入法として実用性があると考えられる。

異種相合は、異種ゲノム間の遺伝的交換がなされたことを裏付けていいく反面、単ゲノム品種となった以後も染色体の転座による遺伝
の変異の生ずる可能性を示唆している。こうした変異は、たとえ生じたとしてもいずれ淘汰されるであろうが、その際に、導入された形質が消失することがないよう、原種を維持していくことが必要である。今のところ、‘YR江戸川’に変異は見られないが、今後の利用場面においては十分留意する必要がある。

摘　要

1. コマツナおよび萓黄病 typeA 抵抗性を有するキャベツを用い、子房・胚培養法による種間雑種を 1990 年に作出した。これらの種間雑種は、まずも複数株ではなく、複二倍体または異数体植物も認められた。1991 年以降、複二倍体の雑種に対して根腐れ抵抗性のターサイを 1 回交雑し、さらにコマツナを 2 回交雑して、萓黄病抵抗性をもつコマツナ型復帰植物を、1993 年に選抜した。さらに、自殖を 4 回繰り返し、萓黄病抵抗性が遺伝的に固定した ‘EC25-1’ を、2000 年に選抜した。

2. ‘EC25-1’ はキャベツ由来の萓黄病抵抗性のほかに、根腐れ病抵抗性も保有している。形態上、葉の縮れや異形の欠点があるが、前期栽培においては弱飛散しにくく、細根が少ないなどの特長を持っている。また、組み合わせ能力検定の結果から、母本として利用できることが明らかになった。

3. 組み合わせ能力検定の過程で育成された‘01 試交 12’ は、親系統‘EC25-1’の萓黄病抵抗性や飛散のし難さなどの長所を受け継ぐ一方、欠点である葉の縮れや異形は少なく、形態は改善された。また、同品種は、紫外線照射下のウオブ栽培において、軟弱飛散性の品種の劣化がない。さらに、キャベツ由来の萓黄病抵抗性のほかに、市販コマツナ品種が保有する萓黄病抵抗性を併せ持つと考えられた。

4. 2003 年に、‘EC25-1’を‘YR江戸川’と命名し、農林水産省へ品種登録申請した。一方、‘01 試交 12’ も同年に品種登録を申請した。

5. アブラナ科異種ゲノム間で形質導入を図る場合には、異種対面の生じにくい複二倍体ではなく、複数数体 F1 植物を素材として利用することが妥当とされている。しかし、‘YR江戸川’の発

成で示されたように、複二倍体 F1 植物を用いる方法も、その後の異数体を経過する過程で異親対合が生じることから、形質導入法として有効と考えられる。

謝　辞

本試験を実施するためにあたり、萓黄病菌株の提供や検定の面で、多大なるご協力をいただいた東京都農業試験場竹内 純氏、研究開始当初より種々のご助言をいただいた同元場長飯嶋 勉博士、栽培試験でご協力いただいた岩本千絵氏、村松聡志氏、野呂 孝士氏、吉田和子氏ならびに職員各位、根腐病検定でご協力いただいた元東京都農業試験所長荒巻 一雄氏、育成品種の評価や実用化に向けてご尽力いたしていただいた東京都農林水産局小林俊明氏、東京都農業改良普及センター職員各位ならびに関係者各位、貴重な種子をご提供いただいた長野県野菜花卉試験場の諸氏に心からお礼申し上げる。

引用文献

日向庚吉・西尾 剛 (1979) 自家不和合性、その機構と制御. 育種学最近の進歩 20: 72-78. 啓学出版. 東京.
飯嶋 勉 (1971) カンラン萓黄病の防除に関する試験. 東京農試研報 5: 7-36.
Inomata, N. (1977) Production of interspecific hybrids between Brassica campestris and Brassica oleracea by culture in vitro of

岩佐正一・徳増智 (1979) アブラナ属および近縁属植物のゲノム分化と種属間雑種の細胞学的安定性. 育種学最近の進歩 20: 46-54. 啓学出版. 東京.

農林水産省統計情報部 (2003a) 平成 14 年産野菜の作付面積、収穫量及び出荷量 (果菜類、果実の野菜、葉茎菜類). p41.

農林水産省統計情報部 (2003b) 第 77 次農林水産省統計表 (平成 12 年～13 年) 農林統計協会. p184.

Summary

Takashi Noguchi (2004): The breeding of Komatsuna parent 'YR·Edogawa' and F₁ hybrid '01·Shikoh No.12' - Introduction of the cabbage *Fusarium* resistance to the Komatsuna - Bull. Tokyo Metro. Agric. Exp. Sta. 32: 1-20. (Received November 17, 2003; Accepted December 5, 2003)

Key words: *Brassica, Fusarium* resistance, interspecific hybrid, Komatsuna, transduction

1. The interspecific hybrids between Komatsuna (*Brassica campestris*) and cabbage (*B.oleracea*) that possessed type-A resistance to *Fusarium* were obtained by the ovary-embryo culture method, in 1990. Not only amphihaploid but amphidiploid or heteroploid plants were found out in the interspecific hybrids. In 1991 and afterwards, back crossing of the clubroot-resistant Ta·tsai (*B.campestris*) was carried out one time to the amphidiploid hybrid, and that of the Komatsuna was also carried out further twice, and Komatsuna-like reversional plant retaining the *Fusarium* resistance was selected in 1993. Then, self-fertilization of the reversional plant was repeated and 'EC25·1' that fixed the resistance was selected, in 2001.

2. 'EC 25·1' had not only the strong *Fusarium* resistance but also clubroot-resistance of a certain level. As for morphological characteristics, although 'EC 25·1' had faults, such as a curl and a curve of the leaf, it had strong points of not carrying out spindly growth in summer cultivation and of not growing a rootlets. In order to examine the capability as a parent of 'EC 25·1', the combination ability test was performed. Consequently, it became clear that it could use as a parent.

3. F₁, hybrid '01·Shikoh No.12' which was bred in process of the combination ability test inherited the strong points of 'EC 25·1', and slightly inherited the faults. The quality of '01·Shikoh No.12' was not spoiled by cultivation in the ultraviolet-less greenhouse that brings about not only the insect-pest control effect but spindly growth. Furthermore, this hybrid was considered to possess the *Fusarium* tolerance that originated from a commercial Komatsuna variety, besides the resistance of the cabbage source.

4. 'EC 25·1' which was named 'YR·Edogawa', and '01·Shikoh No.12' were applied for registration of variety to the Ministry of Agriculture, Forestry, and Fisheries, in 2003.

4. The following thing became clear concerning the transduction between different genomes in *Cruciferae*. Generally, since it is hard to produce an allosynapsis in the amphidiploid plant, to use an amphihaploid as a source of transduction is recommended. However, as was shown by breeding of the 'YR Edogawa', the system of making the amphidiploid F₁ plant a starting material is effective as a transduction method, because an allosynapsis and translocation arises in the subsequent heteroploid generation.