入谷朝顔市にむけた行灯アサガオ生産の技術改善
および購入後管理方法

田 旗 賢 也

キーワード：アサガオ，入谷朝顔市，鉢栽培，肥料，ケミカルコントロール

緒 言

アサガオ Ipomoea nil (L.) Roth は，薬草として
奈良朝廷喜年間に伝来し，後に独特の遺伝学的発達
を遂げ，日本独自の花を世界に示した園芸植物で
ある（仁田桜，1999；平野，2001）。

江戸庶民にアサガオ栽培が浸透したのは，元禄
（1688-1703）から文化〜天保（1804-43）年間と考え
られており，この時代，中国の鉢栽培技術が国内
に普及し，また，遺伝的多様性が拡大して，変化ア
サガオを中心とした鉢植えアサガオの栽培・観賞が
流行した（渡辺，1996）。そして1815年には，大阪
で日本初の朝顔図譜『花壇朝顔通』と『華牛品類図
考』が，1817年には江戸で『阿佐家宝薬』が発行さ
れた。また，朝顔花合会が催され，朝顔畑が作成さ
れた（渡辺，2001）。また，販売的にも多くの和
歌・俳句・川柳・随筆の材料となり，歌舞伎，浮世
絵，俳句にも登場している（米田，1995；岩渊，2000）。
このように，古くからアサガオは日常生活に深いつ
ながりがあった。

現代でも全国各地でアサガオの観花・品評会が開
催されているが，最も著名で大規模なイベントは，
毎年7月6日から8日まで3日間に行われ，かすたが
いる朝顔まつり（以下，入谷朝顔市）である。そ
の集客力と経済規模は，他のイベントを圧倒してお
り，1992年頃には，3日間で100万人以上の入出で
販売，15万鉢が取引販売された（水戸，1999；小
学館クリエイティブ，2003）。入谷朝顔市の起源は，
1877年頃とされるが，都市化の進展と世情不安の拡
大に伴い，1913年に一時中断したが，1948年に地
元商店会・自治体の尽力で復興して現在に至ってい
る。復興時には，素焼鉢などの園芸資材メーカーの
江戸川区内の鉢花生産者の助けもあり，以来，最大
のアサガオ生産地は江戸川区となり，現在も，入谷
朝顔市で売買される鉢鉢が，模型を中心にするこ
の地で生産されている（東京都花装連，1968；川野，
1999）。現在の入谷朝顔市では，台東区真下寺境内
を核に，宮問通り沿いに約100軒のアサガオ販売店
（露店）が建ち並ぶが，その約半数は，生産者の直
営店である。東京の鉢花農家の特徴は，高収益な
基幹品目がある点（浅野，2002），であるが，入谷
川区の鈴花生産の基幹品目は，まさにアサガオで
ある。

入谷朝顔市で中心的に販売されるのは，大輪咲の
行灯仕立であり，1鉢に4色，すなわち異花色・花
模様の4品種を寄せ植えし，つるを行灯に絡ませた
ものが定番である（以後，4本植行灯アサガオ）。こ
の栽培方法は，より多くの花色を求める消費者の要
望に，生産が反映されることが発達したが，消費地へ
の輸送距離が短いという，都市部生産地のメリット
が発揮された有効な戦略ともいえる。しかし，客と
相対して販売する形態が異なり，消費者が満足し
ている鉢花を提供しているとは言えない。たとえ，生
産・販売者は，「朝顔市に必ず花が咲く」ことを
を第一に求めるため，購入後の品質管理を含め
たサポートは少ないのが現状である。

そこで，本研究では，4本植行灯アサガオについ
て，鉢花の重要な品質要因である，より多くの花が
長期間にわたり咲き続けることを目的に，栽培方法
との関係を明らかにするとともに，購入後も引き続
き着花良好な状態で観賞できる管理方法について検
討した。

材料および方法

安定的に入谷朝顔市へ出荷するための栽培技術，
そして生産物の品質向上、特に、購入者が長く、多くの花を楽しむことができる。アサガオの栽培と購入後の管理方法を検討するため、本研究は 6 項目における試験で構成した。

1. 共通的な方法

各試験とも、特に説明を加えない限り、入谷朝顔市内の朝顔栽培場所は、P.O.フィールド（農薬用 Poly Olefin 系特殊フィルム）を用いた。最低 18℃加温のパイプハウス内、栽培後の管理場所は、屋外または雨よけハウス内とした。播種は、128穴セルトレイを使用し、播種用具は Metro-Mix®350（Scotts®）単用とした。定植用具は、赤土（千葉市南部層細孔粘土）：腐葉土：無調整ビートモス：モミガクラタ

の 4：3：2：1（v/v）配合土で、予め蒸気消毒を行い使用した（pH=5.5 H2O, EC=1.2 mS/cm）。なお、赤土には 3kg/m2の過リン酸肥料を混和した。基肥は、用土 1㎡あたり 3kg のマグアンプ（N-P2O5-K2O=6-40-6）とした。定植後の灌水方法は、ハスロによる毎朝 1 回の手灌水とし、行灯栽培場所、伸長したつる（主茎と側枝）行灯（外径 18cm、深さ 15cm 間隔の 3 段構造）の下段から上段に適宜を行った。また、枯死除去は除草剤とともに、結実防止と翌日の正常な開花を促すため、開花後の摘花処理（花がら取り）を毎日実施した。

2. 農家生産による 4 植行灯アサガオの開花状況（試験 1）

入谷朝顔市で販売される行灯アサガオの開花能力を明らかにするため、入谷川区内の栽培農家数軒から、栽培途中のアサガオ鉢をサンプリングし、朝顔市基島も要件条件で開花数を比較した。対象農家数は 11 軒で、1996 年 5 月 14 日に 4 植行灯アサガオを 1 鉢ずつ入手して調査を開始した。なお、入手にあたり、使用品種、鉢用土組成、基肥量などの栽培方法および管理等、定植場所の管理履歴は問わなかった。場内に搬入したアサガオは、最低 18℃加温設定のパイプハウス内で栽培し、8 月 31 日まで開花数調査を実施した。追肥は、液貯 Peters Professional® General Purpose（N-P2O5-K2O=20-20-20）、1,000 倍希釈液（N=200ppm）を週 1 回施用した。試験期間中の每日午前に、開花数を調査した。

3. 朝顔市向け主要品種の開花数の検討（試験 2）

行灯仕立て、朝顔市販売に栽培される品種の開花能力を明らかにするため、購入後も想定し、同一管理条件における長期的な開花数を比較した。江戸川区内の生産者が、行灯づくりで使用する大輪品種の州浜薬系 S、鶴見系 24、黒目 5 品種、及び屋外栽培品種の「ヘブンリープルーブ、白花夕顔」や「標準品種「スカーレットオハラ」など、計 48 品種を供試した。なお、アサガオ野生種「アフリカ、観光館」以外は、行灯仕立て以外の鉢栽培やラベル付ボタ苗で野栽培される品種であり、種子は国内種苗会社から販売されている。各品種とも、2 植行灯仕立てにおける 3 日開花数をハウス内で 8 月 31 日まで調査した。播種は 1996 年 4 月 11 日で、5 月 2 日に 18cm の仕上鉢に定植した。なお、基島「北京天覧、アフリカ」およびヨルガオ「白花夕顔」は、径 21cm ブラ鉢に 4 倍定植した。品種もまた 2 〜 3 鉢を供試し、7 月 6 日以降は Peters Pro® GP で N=200ppm の液肥を毎週 1 回追肥した。

4. 仕立て作業を軽減するためのダミノジッド剤（SADH剤）処理方法の改善（試験 3）

ダミノジッド剤（以下 SADH剤）は肥料伸長抑制剤効果があり、わい化粉として多くの花き類、特に鉢花・花壇苗盆出で出荷時草抜改善を目的に使用される（横並, 1982）。製品は、アサガオに対しても植物成長調整剤として農薬登録（第 12842 号）されており、用途は本葉 5 〜 7 枚展開時に 400〜800 倍希釈液の散布である（JA 全農, 2003; 農薬労働農業水産部, 2003）。すなわち本実験で用いるアサガオの鉢栽培場所では、露地栽培の約半分が、なるまき作業にかかわる（越澤, 1995; 東京農試, 1996）ことから、アサガオでは特に、なるまきの作業を軽減させ、作業時間の短縮や人件費の節約を主目的におい化粉が利用される（田中, 1993）。このため、アサガオ鉢栽培では、わい化粉処理の成功に不成功が農家経済に直接的な影響を及ぼす。そこで、行灯アサガオ
ガオの観察状況と労務軽減を両立させたSADH剤の処理方法を検討し、適用拡大のための基礎資料に供する。

（1）SADH剤の2回処理と生育・開花

適用で定めるSADH剤処理方法では、すでに展開している葉の着生節に対しては、効果が弱い。このため、特に主茎下位節の節間が長くなり、行灯仕立を行った際、下位葉の葉数が不足して、行灯のバランスが崩れたり、出荷時の花形に影響が残る傾向がある。そこで、処理時期と2回処理の効果を明らかにする。

生育旺盛で強いの良い青葉入業葉系の園芸品種‘睡の峰’と対照 ‘St.Violet’の2品種を供試し、1996年4月11日に播種した。’St.Violet’は4月26日に外径15cmのプラスチック製鉢（以下、プラ鉢）へ1本定植し、伸長したつる（主茎と側枝）は、随時、ひもに誘引し、ハウス内で管理した。SADH剤は、ビオ・ニーダ溶剤80%（日本製造）を使用し、①無処理、②1回処理（5月14日；1,600ppm散布）、③1回処理（6月1日；800ppm散布）、④2回処理（5月14日；1,600ppm+6月1日；800ppm散布）の4試験区を設け、1区あたり30鉢を供試した。1鉢あたり薬剤散布量は、5月14日は2.5cc、6月11日は7ccとした。なお、‘睡の峰’は、4月26日に外径18cmの鉢に4本定植した行灯仕立も、5鉢/区供試した。両栽培方法とも、定植から入谷朝顔市までの栽培期間中は、全区一斉に液肥Peters Pro® GP.（N=200ppm）を1～2週に1回の頻度で施用した。行灯仕立には7月6日以降、同様の液肥（N=400ppm）を週1回追肥した。

調査は、1本植え引栽培では、5月13日から7月10日まで、ほぼ10日間隔で主茎長を計り、主茎上の第1花開花節位と到花日数（播種日からの日数）を求めた。また、7月3日には花径、7月6～8日には、主茎開花の株数と開花節位を調査した。行灯仕立では、9月6日まで日開花数を調査した。

（2）SADH剤2回処理における処理時期と開花数の差異

SADH剤2回処理について、朝顔市期間中の花径に影響を残さないための処理時期を明らかにするため、‘睡の峰’を供試して、1996年4月14日に播種、4月23日に径12cmのプラ鉢へ定植して、1本植え引栽培を行った。処理日は、①5月12日+6月9日。②5月12日+6月2日、③5月5日+6月2日、④5月5日+5月26日を設定し、無処理区と合わせた全5区で検討した。なお、SADH剤の処理は、各区とも1回目1,600ppm、2回目800ppm散布とした。第1花開花節位と到花日数を調査し、7月6日には、主茎長と花径を調査した。また、花色の異なる藤蔓大輪咲系‘睡の雲、睡の紫、睡の雪、睡の峰’の4品種を供試し、1998年4月13日播種、4月23日定植の4品種寄せ植えの行灯仕立てを行い、8月31日までの開花数を調査した。供試鉢数は1区あたり1本植えは32鉢、行灯仕立は4鉢とした。行灯仕立てには7月6日以降、液肥Peters Pro® GP.（N=400ppm）を週1回追肥した。

5. 購入後管理方法の検討（試験4）

入谷朝顔市で購入した後も、長期間、多くの花を楽しむことができる行灯アサガオの管理方法を確立するために、適正な施肥方法と、摘取処理の効果を明らかにする。

各試験とも、青葉入業葉系‘睡の春、睡の夢、睡の錦’、及び月白大輪系‘富士の青’の4品種を供試し、1999年4月21日播種、5月6日定植の4本植え行灯仕立てを供試した。なお、5月4日と14日に液肥Peters Pro® GP.（N=100ppm）を施用し、5月26日には、くみあい尿素入IB化成53号（N-P₂O₅-K₂O=10-10-10）を10粒（5.4g/鉢）追肥した。

（1）購入時における緩効性肥料の適正施用量

購入時における緩効性肥料の施用効果を、花数の推移から明らかにする。1999年7月7日に、プロミック®緩剤肥料スタンダードタイプ（N-P₂O₅-K₂O=12:12:12 1.57g/鉢 ハイポネックスジャパン）を鉢表面上に施用し、施肥量として0、4、8、12、16、20粒/鉢の5試験区で検討した。5鉢/区を供試し、9月7日まで屋外で管理した。処理以外の生育は行わず、灌水は、毎日朝1回を原則とした。日開花数を調査し、花数調査後で摘花処理を実施した。また、9月7日には、成葉葉身の緑色部6ヵ所の葉緑素値を、ミノルタ製SPAD502で計測した。

（2）購入後追肥管理における液肥種類と希釈濃度
の検討
購入後管理として、液肥による追肥施用の効果を、花数の推移から検討する。2種の液肥①Peters Professional® General Purpose（N-P₂O₅-K₂O=20-20-20）と②Peters Pro.® Blossom Booster（N-P₂O₅-K₂O=10:30:20）を用い、①は250, 500, 1,000, 2,000倍、②は250, 500, 1,000, 2,000倍の希釈倍数の異なる試験区と、水道水のみ施用の無処理区も含めた10試験区（5区/区）を設け、朝顔市2ヶ月後の9月7日までの日開花数を調査した。
なお、朝顔市の管理は屋外で実施し、液肥追肥の管理頻度は週1回、灌水は毎日満1回を原則とした。また、9月7日には、成葉葉身部の色の差3ヶ所の葉縁緑度を、ミノルタ製SPAD502で測定した。
（3）花がら摘みと開花数
購入後の適花数処理が、長期的な開花数に及ぼす影響を明らかにする。開花当日の夕方や花柄部から子房ごと摘花する処理区と、摘花しない無処理区について開花数を比較した。両試験区とも「暁の春、暁の夢、暁の錦、富士の青」4品種寄せ植えの行灯仕立10鉢を供試し、朝顔市2ヶ月後の9月7日まで屋内で管理した。追肥は、Peters Pro.® GPを、N-400ppmで週1回施用した。期間中は、日開花数を品種別の調査し、9月7日には、成葉葉身部の色の差3ヶ所の葉縁緑度をミノルタ製SPAD502で測定した。

6. 鉢定植本数が生育・開花に及ぼす影響（試験5）
径18cm鉢の4本植行灯仕立は、入種朝顔市個体の栽培方法である。そこで、鉢への定植本数が、出荷前の栽培期間中および購入後の開花数に及ぼす影響を明らかにする。
青塗入葉巻葉品種「暁の春」を供試し、1998年4月13日に125穴セルトレイに播種した。4月23日に子葉展開苗を、朝顔市慣行の径18cmプラ鉢（容積2L）に定植し、1鉢あたり定植本数1、2、3、4、5本の5試験区を設け、誘引栽培と行灯栽培を行った。各区とも基肥を使用せず、葉色を観察しながら液肥Peters Pro.® GPを、N-200ppmで、8月は400ppmで週1回施用した。栽培・管理場所は、最低18℃加温設定のバイブハウス内（夏季はサイド全開）で、誘引栽培では、伸張し
2つある（主茎・側枝）を、ハウス内に垂直に立てた細パイプに巻きつくように管理した。5月7日から6月22日までの期間は、1週間隔で主茎長、主茎節数、地際部の茎径を調査し（6月11日は未実施）、第1花開花日と開花節位を調査した。また、行灯栽培では、調査全期間にわたって日開花数を調査し、開花始から朝顔市まで、開花始から7月31日まで、開花始から8月31日までの開花数合計を求めた。

7. 4本植行灯仕立における鉢容積が生育と開花に及ぼす影響（試験6）
行灯鉢の容積が、朝顔市出荷に及ぼす栽培期間中の生育と、購入後の開花数に及ぼす影響を明らかにする。
青塗入葉巻葉品種「暁の春」を供試し、1999年4月21日に播種し、4月28日に同一品種を定植鉢に4本定植し、行灯栽培を行った。定植鉢は、慣行の径18cmプラ鉢を標準区（容積V＝2L、内径φ＝16cm、鉢高h＝14cm）とし、容積1/2倍（V＝1L、φ＝13.5、h＝13.5）、2倍区（V＝4L、φ＝20、h＝21）、4倍区（V＝8L、φ＝26、h＝24）、8倍区（V＝16L、φ＝35、h＝24）の全5区を設けた。各区ともハウス内で9月6日まで栽培管理し、日開花数を調査した。なお、基肥は無施用、追肥は、液肥Peters Pro.® GPにより、N-200ppm、8月はN-400ppmで週1回施用した。

結果
1. 農家生産による4本植行灯アサガオの開花状況（試験1）
慣行栽培における行灯アサガオの開花能力を明らかにするため、江戸川区内11軒の生産農家から、栽培途中のアサガオ鉢を入手し、8月31日までの日開花数を調査した。結果を表1に示す。

4本植行灯アサガオ11鉢の第1花開花日は、平均6月21日で、生産者間で6月11日から6月26日までばらついた。また朝顔市前である、開花始から7月5日までの開花数合計は、生産者間で10から44花/鉢まで幅があり、朝顔市開花日間（7月6～8日）の開花数合計でも、Bの無開花からHの9花/鉢ま
表1 管内アサガオ生産農家から入手した行灯仕立てアサガオの開花状況（試験1）

<table>
<thead>
<tr>
<th>生産者</th>
<th>第1花開花日（月/日）</th>
<th>開花数合計（花／株）</th>
<th>日最多開花数</th>
<th>記録日（月/日）</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>6/11</td>
<td>44</td>
<td>346</td>
<td>8/25</td>
</tr>
<tr>
<td>B</td>
<td>6/23</td>
<td>15</td>
<td>316</td>
<td>8/17</td>
</tr>
<tr>
<td>C</td>
<td>6/20</td>
<td>10</td>
<td>260</td>
<td>8/7</td>
</tr>
<tr>
<td>D</td>
<td>6/26</td>
<td>21</td>
<td>325</td>
<td>8/16</td>
</tr>
<tr>
<td>E</td>
<td>6/17</td>
<td>23</td>
<td>346</td>
<td>8/23</td>
</tr>
<tr>
<td>F</td>
<td>6/25</td>
<td>34</td>
<td>383</td>
<td>8/23</td>
</tr>
<tr>
<td>G</td>
<td>6/22</td>
<td>17</td>
<td>381</td>
<td>8/21</td>
</tr>
<tr>
<td>H</td>
<td>6/20</td>
<td>14</td>
<td>346</td>
<td>8/16</td>
</tr>
<tr>
<td>I</td>
<td>6/20</td>
<td>29</td>
<td>361</td>
<td>8/16</td>
</tr>
<tr>
<td>J</td>
<td>6/22</td>
<td>19</td>
<td>372</td>
<td>8/12</td>
</tr>
<tr>
<td>K</td>
<td>6/25</td>
<td>28</td>
<td>390</td>
<td>8/10</td>
</tr>
<tr>
<td>平均値</td>
<td>6/21</td>
<td>23.1</td>
<td>347.8</td>
<td>8/10</td>
</tr>
</tbody>
</table>

a）上18cmプラ鉢の4本植行灯仕立てを、96年5月14日に江戸川区内生産者から1鉢ずつ提供を受け、以後、江戸川分場内18℃ハウス内で管理した。

題肥は、Peters Professional® General Purpose（H-P2O5-K2O=20-20-20）N=200ppm週1回施用。

で大きな差がある。朝顔市終了後（7月9日）から8月31日までの開花数合計は、Cで最小の260花、Kで最大の390花に達し、生産者間で大きく異なった。

2. 朝顔市向け主要品種の開花数の検討（試験2）

アサガオ野生種と近縁種、および常例生産で使用される品種について、同一品種4本植の行灯仕立てによる8月31日までの開花数を調査した。結果は、

表2に示した。

州浜・蝋葉大輪咲品種の第1花開花期は、6月27日から30日に集中したが、No.13‘青竜’は6月20日から早く、No.11‘夕月’、No.14‘暁の雪’は7月2日以後で、朝顔市初日（7月6日）に近く、やや遅咲である。中輪咲で、一般には径12-15cm鉢植えや苗で出荷されるNo.41‘アーリーコール’は、第1花開花日が6月上旬で、野生種No.44‘北京天壇’と同様、極めて早く咲き、同属異種のヨルガオ（L. alba L.）No.46‘白花夕顔’の開花は、7月28日と極めて遅い。

朝顔市前の開花数合計は、曜白中小輪咲品種が多く、また、この系統は朝顔市後の開花数合計も多かった。

特にNo.36‘沙矢佳’とNo.38‘矢車’は、500花/鉢以上に達し、州浜・蝋葉大輪咲品種の概ね倍量であった。次いで朝顔前の開花数合計が多いのは、曜白大輪咲品種のNo.34‘富士の最’とNo.35‘富士の星’である。したがって、曜白大輪咲品種で朝顔市中の開花数合計が多かったのは、No.30‘富士の虹’No.31‘富士の峰’である。州浜咲と蝋葉大輪咲品種における朝顔市市の開花数合計は、ほぼ200～300花に達するが、州浜・蝋葉の系統間の差は明らかではない。

また、大輪咲品種の開花数合計と、花色・模様などの形質との間には、関連性が認められない。

3. 仕立作業を軽減するためのダミノジッド剤（SADH剤）処理方法の改善（試験3）

（1）SADH剤の2回処理と生育・開花

主観・次回の生育と到花数・開花数などが開花に対するSADH剤の処理時期、および2回処理の効果を明らかにする。結果は表3、図1～3に示した。

本実験での処理時と花齢度は、各区とも‘Stiolet’で、1回目（5月14日）が2.1～2.3枚で、適用範囲である。また、2回目（6月1日）は6.9～7.5枚で、これも適用範囲から外れている。処理濃度は、1,600ppmは500倍希釈液、800ppmは1,000倍希
<table>
<thead>
<tr>
<th>系統名</th>
<th>花弁</th>
<th>基調色</th>
<th>横線</th>
<th>第1花開花日</th>
<th>開花数合計（花／株）</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ipomoea nipponica</td>
<td>常咲葉大輪咲品種（タキイ品種）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>平安の香</td>
<td>純白</td>
<td>無地</td>
<td>赤色</td>
<td>6月30日</td>
</tr>
<tr>
<td>2</td>
<td>平安の紫</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>平安の春</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>平安の桜</td>
<td>桃色</td>
<td>白膔輪</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>平安の輝</td>
<td>紫色</td>
<td>吹雪輪</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>赤い峰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>春の光</td>
<td>桃</td>
<td>無地</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>水月</td>
<td>青</td>
<td>無地</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>秋の雲</td>
<td>紫</td>
<td>無地</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>冬光</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>夕月</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>夕雲</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>青松</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L.Nil</td>
<td>萩葉大輪咲品種（タキイ品種）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>晚の雪</td>
<td>白</td>
<td>無地</td>
<td>6月30日</td>
<td>16</td>
</tr>
<tr>
<td>15</td>
<td>晚の光</td>
<td>白</td>
<td>無地</td>
<td>6月30日</td>
<td>12</td>
</tr>
<tr>
<td>16</td>
<td>晚の紅</td>
<td>濃紫</td>
<td>無地</td>
<td>6月27日</td>
<td>28</td>
</tr>
<tr>
<td>17</td>
<td>晚の秋</td>
<td>青</td>
<td>無地</td>
<td>6月28日</td>
<td>5</td>
</tr>
<tr>
<td>18</td>
<td>晚の春</td>
<td>濃紫</td>
<td>無地</td>
<td>6月26日</td>
<td>52</td>
</tr>
<tr>
<td>19</td>
<td>晚の冬</td>
<td>淡紫</td>
<td>無地</td>
<td>6月20日</td>
<td>28</td>
</tr>
<tr>
<td>20</td>
<td>晚的峰</td>
<td>青</td>
<td>無地</td>
<td>6月30日</td>
<td>17</td>
</tr>
<tr>
<td>21</td>
<td>晚的桜</td>
<td>濃紫</td>
<td>白膔輪</td>
<td>6月29日</td>
<td>18</td>
</tr>
<tr>
<td>22</td>
<td>晚的紫</td>
<td>淡紫</td>
<td>紅</td>
<td>6月27日</td>
<td>10</td>
</tr>
<tr>
<td>23</td>
<td>晚的紅</td>
<td>淡紫</td>
<td>紅</td>
<td>6月28日</td>
<td>5</td>
</tr>
<tr>
<td>24</td>
<td>晚的花</td>
<td>淡紫</td>
<td>紅</td>
<td>6月20日</td>
<td>10</td>
</tr>
<tr>
<td>25</td>
<td>晚的寒</td>
<td>淡紫</td>
<td>紅</td>
<td>6月30日</td>
<td>9</td>
</tr>
<tr>
<td>26</td>
<td>晩の桜</td>
<td>淡紫</td>
<td>白膔輪</td>
<td>6月28日</td>
<td>26</td>
</tr>
<tr>
<td>27</td>
<td>晩の桜</td>
<td>淡紫</td>
<td>白膔輪</td>
<td>6月28日</td>
<td>9</td>
</tr>
<tr>
<td>28</td>
<td>晩の桜</td>
<td>淡紫</td>
<td>吹雪輪</td>
<td>6月30日</td>
<td>25</td>
</tr>
<tr>
<td>L. Nil</td>
<td>萩葉大輪咲品種（サカタのタネ）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>富士の紅</td>
<td>淡紫</td>
<td>紅</td>
<td>6月25日</td>
<td>42</td>
</tr>
<tr>
<td>31</td>
<td>富士の紫</td>
<td>淡紫</td>
<td>紅</td>
<td>6月27日</td>
<td>31</td>
</tr>
<tr>
<td>32</td>
<td>富士の桃</td>
<td>桃</td>
<td>紅</td>
<td>6月30日</td>
<td>14</td>
</tr>
<tr>
<td>33</td>
<td>富士の青</td>
<td>淡紫</td>
<td>黒地</td>
<td>6月26日</td>
<td>40</td>
</tr>
<tr>
<td>34</td>
<td>富士の紫</td>
<td>淡紫</td>
<td>黒地</td>
<td>6月23日</td>
<td>51</td>
</tr>
<tr>
<td>35</td>
<td>富士の空</td>
<td>淡紫</td>
<td>黒地</td>
<td>6月22日</td>
<td>50</td>
</tr>
<tr>
<td>L. Nil</td>
<td>萩葉中輪咲品種（サカタのタネ）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>桃紅芒</td>
<td>桃</td>
<td>紅</td>
<td>6月26日</td>
<td>51</td>
</tr>
<tr>
<td>37</td>
<td>桃芒</td>
<td>桃</td>
<td>紅</td>
<td>6月19日</td>
<td>49</td>
</tr>
<tr>
<td>38</td>
<td>桃芒</td>
<td>桃</td>
<td>紅</td>
<td>6月26日</td>
<td>50</td>
</tr>
<tr>
<td>39</td>
<td>桃芒</td>
<td>桃</td>
<td>紅</td>
<td>6月20日</td>
<td>50</td>
</tr>
<tr>
<td>L. Nil</td>
<td>その他 萩利栽培用品種（サカタのタネ）</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>スカーレットオハラ</td>
<td>紅</td>
<td>無地</td>
<td>6月29日</td>
<td>24</td>
</tr>
<tr>
<td>41-1</td>
<td>アカネモック紅地</td>
<td>紅</td>
<td>無地</td>
<td>6月7日</td>
<td>24</td>
</tr>
<tr>
<td>41-2</td>
<td>アカネモック青地白膔輪</td>
<td>淡紫</td>
<td>白膔輪</td>
<td>6月8日</td>
<td>12</td>
</tr>
<tr>
<td>42</td>
<td>エバーブルー</td>
<td>藍</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Nil</td>
<td>野生種</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>アフリカ</td>
<td>水色</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>44</td>
<td>北京天藍</td>
<td>水色</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L. Nil</td>
<td>Ipomoea nilotica</td>
<td>サラリアサガサ（サカタのタネ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>45</td>
<td>チャンピアブルー</td>
<td>青</td>
<td>無地</td>
<td>6月25日</td>
<td>40</td>
</tr>
<tr>
<td>L. Nil</td>
<td>Ipomoea alba</td>
<td>サガサ（サカタのタネ）</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>46</td>
<td>白花桜</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

a）98年4月1日撮影、5月2日完結。直径18cm鉢に同一品種4本植、無気極行灯仕立栽培。
b）色材は、Peters Professional® OP（20×20×20）N=200ppmを週1回施用。
c）55年に夜塚大学農学部から導入した。
d）径21cm鉢4本植の無気極行灯仕立栽培。
表3 開花節位と到花日数に及ぼすSADH剤2回処理の影響（試験3の1）

<table>
<thead>
<tr>
<th>試験区</th>
<th>開花数（枚）</th>
<th>第1次開花節位</th>
<th>第2次開花日数</th>
<th>到花数（日）</th>
<th>北朝鮮期の主要開花株率（％）</th>
<th>北朝鮮期中の主要開花節位（節）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5月14日</td>
<td>6月1日</td>
<td>7月6日</td>
<td>7月7日</td>
<td>7月8日</td>
<td>7月6日</td>
</tr>
<tr>
<td>無処理区</td>
<td>(2.1)</td>
<td>(6.9)</td>
<td>7.6</td>
<td>68.5</td>
<td>93.3</td>
<td>93.3</td>
</tr>
<tr>
<td>1回処理区</td>
<td>(5月14日</td>
<td>1,600ppm)</td>
<td>2.3</td>
<td>(7.5)</td>
<td>7.2</td>
<td>67.6</td>
</tr>
<tr>
<td>1回処理区</td>
<td>(6月1日</td>
<td>800ppm)</td>
<td>2.2</td>
<td>(5日</td>
<td>7.5)</td>
<td>7.4</td>
</tr>
<tr>
<td>2回処理区</td>
<td>(5月14日</td>
<td>1,600ppm</td>
<td>2.2</td>
<td>(6月1日</td>
<td>800ppm)</td>
<td>7.0</td>
</tr>
</tbody>
</table>

significance**

n.s. n.s.

**) Dunnettの方法により、"n.s."を付した項目は、無処理区と処理区の数値間に、危険率5％で有意差が認められないことを示し、
**) を付した試験区は、危険率1％で優位が認められることを示す。

図1 SADH剤の反復処理が主茎長に及ぼす影響（試験3の1）

a) 図中の上部は、95%信頼区間を示す。

6月1日]区で最大抑制され、7月10日]の主茎長
は、無処理区と比べ40%低い173cmである。1回
処理「5月14日」区の主茎長は、6月11日までの
抑制効果が認められるが、それ以降は伸長が増
大し、増加量では無処理区と同等である。1本植え引
栽培の「高崎の峰」についても同様で、6月11日以
降の主茎長は、2回処理区で最も抑制されたが、1
回処理「5月14日」区における6月11日以降の増
加量は、無処理区両者で同等である。高崎の峰が必
要な主茎長40cm到達日に考慮すると、無処理区
と1回処理「6月1日」区が6月9日頃。1回処理
「5月14日」区が6月14日頃、2回処理区が6月
20日頃である。

「高崎の峰」1本植え引栽培における朝鮮期第7
月3日]の花径は、無処理区に対し、1回処理区で
は同等だが、2回処理区は顕著に大きい。「高崎の峰」
4本植え行間状立における9月6日までの開花数合計
は、無処理区では352花/株で最も少なく、2回処理
区は451花/株で最も多い。

(2) SADH剤2回処理における処理時期と開花
数の差異
SADH剤2回処理について、朝鮮期開花期間中の
花径に影響を及ぼさないための処理時期を検討した。
結果は表4、5に示した。

「高崎の峰」1本植え引栽培における朝鮮期第1
花開花節位について、無処理区は8.6節であるが、「5
月5日と6月2日」と「5月5日5月26日」の
図2 SADH剤散布の反復処理が朝顔花開催前の花径に及ぼす影響（試験3の1）**

a) 供試品種＝‘暁の峰’，播種日＝96年4月11日，調査日＝7月3日。

径15cmプラン鉢1本定植誘引栽培。n=20。処理方法：所定日に所定濃度で散布。

b) 図中の上下線は，95%信頼期間を示す。

図3 SADH剤処理回数と行灯アサガオの長期的開花数（試験3の1）**

a) 供試品種＝‘暁の峰’，播種日＝96年4月11日，

径18cm～同一品種4本植の行灯栽培。

n=5。
2回処理区は、それぞれ6.7、6.1で、明らかに低い。しかし両区とも到花日数は、無処理区と有意差がない。7月6日の主茎長は、無処理区で232cmであったが、処理区は131～162cmで、各処理区とも著しく抑制された。花径は、「5月5日～5月26日」処理区のみ、無処理区と有意差がなく、他の処理区は明らかに小さい。4本植行灯仕立における朝顔市の前開花数合計は、無処理区に比べ、2回処理の各区で増加する傾向があり、「5月5日～5月26日」処理区は、特に多かった。朝顔市の開花期間中の平均開花数は、各区とも1日1輪あたり4.6～6.9花であり、区間に著しい差はない。購入後（7月7日）から31日までの開花数合計は、各区とも500花/輪以上で、区間の明らかな差は認められない。

4. 購入後管理方法の検討（試験4）

（1）購入時のにおける緩効性肥料の適正施用量
購入後の追肥管理として、購入時における緩効性肥料の施用効果を、花数から検討した。結果は、図4と表6に示した。

<table>
<thead>
<tr>
<th>試験区</th>
<th>処理日</th>
<th>第1花開花節位 (日)</th>
<th>到花日数 (b)</th>
<th>主茎長 (c) (cm)</th>
<th>花径 (d) (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1回目</td>
<td>2回目</td>
<td>64.8</td>
<td>231.5</td>
<td>11.1</td>
<td></td>
</tr>
<tr>
<td>無処理区</td>
<td></td>
<td>8.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>処理区</td>
<td></td>
<td>5/12 + 6/9</td>
<td>8.1 n.s. **</td>
<td>65.7 n.s.</td>
<td>143.0 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/12 + 6/2</td>
<td>7.7 n.s.</td>
<td>65.8 n.s.</td>
<td>131.2 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/5 + 6/2</td>
<td>6.7 *</td>
<td>64.6 n.s.</td>
<td>162.1 **</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/5 + 5/26</td>
<td>6.1 **</td>
<td>63.7 n.s.</td>
<td>149.7 **</td>
</tr>
</tbody>
</table>

a) 供試品種＝‘鏡の鏡’、播種日＝98年4月14日。径15cm鉢1本植え引栽培。
処理方法＝1回目1,600ppm、2回目800ppmで散布。
b) 塩塩日を基準とした主茎第1花開花日までの日数 (n=30)。
c) 主茎長 (n=11) 花径 (n=20) は、7月6日に測定。
d) Dunnettの方法により、項目毎‘n.s.’を付した数値は、危険率5%で無処理区の数値間に有意差が認められず、‘**’を付した数値には、危険率1%で、‘*’を付した数値には危険率5%で優位差が認められることを示す。

<table>
<thead>
<tr>
<th>試験区</th>
<th>処理日</th>
<th>朝顔市の前開花数合計 (花/鉢)</th>
<th>朝顔市の開花期間中の平均開花数 (花/鉢)</th>
<th>購入後開花数合計 (花/鉢)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1回目</td>
<td>2回目</td>
<td>41.8 ± 6.8</td>
<td>4.6</td>
<td>524.3 ± 30.6</td>
</tr>
<tr>
<td>無処理区</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>処理区</td>
<td></td>
<td>5/12 + 6/9</td>
<td>48.3 ± 8.1</td>
<td>6.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/12 + 6/2</td>
<td>57.3 ± 3.9</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/5 + 6/2</td>
<td>55.0 ± 5.0</td>
<td>5.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5/5 + 5/26</td>
<td>62.0 ± 3.9</td>
<td>4.7</td>
</tr>
</tbody>
</table>

a) 供試品種＝‘鏡の鏡’、播種日＝98年4月14日。4本植行灯仕立。
b) 処理方法＝1回目1,600ppm、2回目800ppmで散布。
c) 開花数から98年7月3日までの累積開花数 (n = 4)。数値は平均±標準誤差。
d) 7月6日から8日までの1輪あたり日平均開花数。
e) 7月7日から8月31日までの開花数合計。数値は平均±標準誤差。
購入2ヵ月後（9月7日）の葉色を、実験設定範囲内の緩効性肥料施用量で回帰すると、2次式のあてはまりが良く、16粒近辺でピークを示すが、12、20粒との差は少なく、8粒施用でもSPAD値37.7±1.2で、実用上の問題は少ない。

開花始から朝顔市2ヵ月後までの開花数合計を、品種別にみると、各区とも‘暁の夢’が他品種より多い傾向があり、施用量0～20粒までの範囲では、粒数が多いほど開花数が多い傾向が見られた。4本培養鉢あたりの開花数合計、無処理区で261花/鉢だが、緩効性肥料の8粒施用区では407花/鉢が最も、無処理区に比べ56ポイント増加した。また、4粒施用でも383花/鉢が開花し、無処理区と比べ明らかに多かった。

（2）購入後追肥管理における波状種類と希釈濃度の検討
購入後の追肥管理として、毎週1回の波状施用について、肥料種類と希釈濃度から検討した。結果は、図5、6に示した。

両波状種類とも、購入後2ヵ月後の開花数合計は、N濃度800ppmのPeters Pro.®GP、(20:20:20)250倍とPeters Pro.®BB、(10:30:20)125倍施用区が最も多く、N濃度が減少するほど開花数合計は少なくなる。開花数合計と波状中N濃度の関係は、両波状種類とも、2次式のあてはまりが良く、いずれの種類もN濃度600～800ppmで開花数合計ピークを示す。しかし、N濃度400ppm施用でも、ピーク時と同程度の開花数が得られる。Peters Pro.®GPと同BBについて、窒素濃度同一水準で開花数合計を比較すると、Peters Pro.®BBの方が、開花数が多い傾向を示す。その差は僅かである。

（2）購入2ヵ月後の葉色は、両波状種類とも設定した濃度範囲において、高濃度ほどSPAD値が高くなる傾向がある。

図4 購入時における緩効性肥料の施用量と2ヵ月後の葉色（試験4の1）

注）9月7日に成熟果部の緑部部6枚を、ミノルタ製製品増幅計「SPAD592」で計測した。

図中的上下線は、標準誤差(n=5)
点線は2次回帰線

y = -0.077x^2 + 2.400x + 23.01
R² = 0.9972

表6 行灯仕立6購入時における緩効性肥料の施用量と開花数合計（試験4の1）

<table>
<thead>
<tr>
<th>緩効性肥料施用量（粒/鉢）</th>
<th>品種別開花数合計（花/鉢）</th>
<th>開花数合計（花/鉢）</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>53.2</td>
<td>260.6 (100)</td>
</tr>
<tr>
<td>4</td>
<td>88.4</td>
<td>383.2 (147)</td>
</tr>
<tr>
<td>8</td>
<td>74.8</td>
<td>407.4 (166)</td>
</tr>
<tr>
<td>12</td>
<td>72.8</td>
<td>374.2 (144)</td>
</tr>
<tr>
<td>16</td>
<td>87.8</td>
<td>422.5 (162)</td>
</tr>
<tr>
<td>20</td>
<td>85.4</td>
<td>408.6 (157)</td>
</tr>
</tbody>
</table>

[分散分析] 品種 ★★★
施肥量 ★★★
交互作用 n.s.

a）播種日：99年4月21日，径18cm鉢4品種５株の行灯栽培。1区5鉢供試。
供試品種：‘暁の春、暁の夢、暁の鉢、富士の青’（図4同様）
b）供試材：プロミック®緩効肥料スタンダードタイプ（N-P₂O₅-K₂O=12-12-12 1.57g/粒）
処理方法：7月7日に施用土表面に置肥（図4同様）。
c）開花始から1999年9月6日までの4本植行灯1鉢あたり開花数合計。
d）（ ）内の数値は、無処理区を100とした比率。
e）' n.s. 'は危険率5％で有意差なし、' ★★ ' は、危険率1％で優位差あり。
図5 液肥種類と施用濃度が購入後2か月間の開花数合計に及ぼす影響（試験4の2）

注）播種日：99年4月21日，
供試品種：'無，'有，'鈴，'鈴の鈴，'富士の青'，
処理方法：7月8日以後，週1回播種施用。

図6 液肥種類と施用濃度が購入2か月後の結実数に及ぼす影響（試験4の2）

注）播種日：99年4月21日，
供試品種：'鈴の鈴，'鈴の鈴，'鈴の鈴，'富士の青'
処理方法：7月8日以後，週1回播種施用。
調査日：9月7日，ミルガラ禁易篩気素計「SPA502」使用。
図中の上下線は、標準誤差（N=5）

（3）花が摘みと開花数
摘花処理が長期的な開花数に及ぼす影響を検討した。結果は図7および表7、8に示した。

購入後週数別に日平均開花数をみると，両区とも週数経過とともに鉢あたり開花数が増加するが，区間を比較すると，8月21日から10日までの期間を除き，8月31日まで，大半の期間で処理区の方が開花数が多い。品種ごとに見た平均開花数も，朝顔市後は，ほぼ全期間，各品種とも処理区の方が多く，9月6日までの開花数合計は，無処理区では346花/鉢，処理区では404花/鉢で，無処理区と比べ，17%増加した。購入後週別にみた開花株数も，朝顔市後から7週後まで，処理区の方が5～15ポイント高い。

図7 摘花処理が時期別の開花数に及ぼす影響（試験4の3）

注）t検定により，期間毎の値数に'N.S.'は
危険率5%で有意でなし，'**'は危険率1%で
で，'*'は危険率5%で優位差あり。

5. 鉢定植本数が生育・開花に及ぼす影響（試験5）
入谷朝顔市慣行の径18cm深鉢への定植本数が，
栽培期間中と購入後の生育・開花に及ぼす影響を，
薬剤大輪咲品種を用いて検討した。結果は，図8，9，10および表9に示した。

6月22日の主茎長は，1本植が121cmで最大となり，
2, 3, 4, 5本植では104, 91, 88, 61cmで，定植本数が多くなるに伴い小さくなる。出荷前の栽培期間中，いずれの調査日において，主茎長は定植本数に反比例している。主茎節数も，6月12日には，1, 2, 3, 4, 5本植で，それぞれ20, 18, 16, 14, 13節となり，定植本数が多いほど節数が少ない。また，定植本数が多くなるにつれて，栽培期間中の節数増加量も小さい。地際部の主茎径も，6月22日では，1本植が6.4mmで最も太く，以下，本数増加に伴い5.8, 5.4, 5.4, 5.0mmと減少する。各区とも，栽培期間中における地際部節径の増加量は，栽培日数が通過するに従って鈍化し，
表7 購入後週数別にみた日平均開花数に及ぼす摘花処理の影響（試験4の3）a)

<table>
<thead>
<tr>
<th>摘花処理</th>
<th>購入後週別の平均開花数（花／株・日）</th>
<th>購入後開花数合計b)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>購入後週数：</td>
<td>開花始～7/6</td>
</tr>
<tr>
<td>無処理区</td>
<td>晴の春</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>晴の春</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>晴の春</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>晴の春</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>晴の春</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>晴の春</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>晴の春</td>
<td>0.1</td>
</tr>
<tr>
<td></td>
<td>晴の春</td>
<td>0.3</td>
</tr>
<tr>
<td></td>
<td>F-testc)</td>
<td>处理</td>
</tr>
<tr>
<td></td>
<td>摘花</td>
<td>**</td>
</tr>
<tr>
<td></td>
<td>交互作用</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

a) 授種日：99年4月21日，植え付け幅4品種実験の行火栽培，各区10株供試。
b) 供試品種：‘消の春’，‘消の春’の春，‘消の春’の春，‘消の春’の春。
処理区：7月8日以後，開花時分の花が時計を除く日に伴う日の，図7・表8関係。
開花数は表中の試験用の1区1株あたり開花数。

表8 摘花処理と購入後の週数別にみた開花数率（試験4の3）a)

<table>
<thead>
<tr>
<th>摘花処理</th>
<th>購入後週別にみた1日あたり平均開花数率（％）</th>
<th>購入後週別にみた1日あたり平均開花数率（％）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>開花始～7/6</td>
<td>7/7-13</td>
</tr>
<tr>
<td>無処理区</td>
<td>8.3</td>
<td>38.9</td>
</tr>
<tr>
<td>処理区</td>
<td>9.4</td>
<td>37.7</td>
</tr>
</tbody>
</table>

a) 開花株率＝開花の胞数／供試株数（n=10）

図8 銭あたり定植本数と
主茎長の変化（試験5）

図9 銭あたり定植本数と
主茎節数の変化（試験5）

図10 銭あたり定植本数と
地際部茎径の変化（試験5）

注）供試品種：‘消の春’，播種日：99年4月13日，
定植日：4月23日，
定植区は、径2cmプラスチック製深鉢，
誘導栽培（図9・10同様）。

- 52 -
表9 鉢あたり定植本数が開花に及ぼす影響（試験5）

<table>
<thead>
<tr>
<th>定植本数 (本／鉢)</th>
<th>第1花開花日 (日)</th>
<th>第1花開花節位 (節)</th>
<th>開花始からの開花数合計c) (花／鉢)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>7月5日 〜 8月1日 〜 8月31日</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>6月10日</td>
<td>8.0</td>
<td>50.1 163.2 476.3</td>
</tr>
<tr>
<td>2</td>
<td>6月7日</td>
<td>7.5</td>
<td>53.2 174.7 486.0</td>
</tr>
<tr>
<td>3</td>
<td>6月10日</td>
<td>6.6</td>
<td>56.3 185.7 523.7</td>
</tr>
<tr>
<td>4</td>
<td>6月11日</td>
<td>6.1</td>
<td>57.1 185.3 508.2</td>
</tr>
<tr>
<td>5</td>
<td>6月13日</td>
<td>6.4</td>
<td>49.1 160.3 539.8</td>
</tr>
<tr>
<td>n</td>
<td>20</td>
<td>20</td>
<td>20 6 6</td>
</tr>
<tr>
<td>F-testd)</td>
<td>**</td>
<td>**</td>
<td>* n.s. *</td>
</tr>
</tbody>
</table>

a) 黒18caプラスチック製鉢鉢計容積24cm³。
98年4月13日播種。4月23日定植。有削鉢用大輪定系「褐の峰」供試。
b) 第1花の開花日と開花節位の観察は、鉢植栽培で実施した。
c) 開花数観察は、行灯栽培で実施した。
d) 項目毎n.s.を付した数値は、分散分析により危険率5％で各区の数値間に有意差が認められないことを示し、「**」を付した数値には、危険率1％で、「*」を付した数値には危険率5％で有意差が認められることを示す。

図11 4本移植行灯栽培における鉢容積が花径に及ぼす影響（試験6）

a) 供試品種「褐の峰」、99年4月21日播種。
4月28日定植の同一品種4本植。
調査日：7月11日・12日・13日。
b) Tukey法により、同一英字文字を付した処理区間
には、危険率1％で有意差が認められないことを示す。

表10 4本移植行灯栽培における鉢容積が開花数に及ぼす影響（試験6）

<table>
<thead>
<tr>
<th>鉢容積 (cm³)</th>
<th>購入後週別の日平均開花数 (花／鉢)</th>
<th>開花数合計c) (花／鉢)</th>
</tr>
</thead>
<tbody>
<tr>
<td>種品</td>
<td>1 0.7 0.8 1.8 2.4 4.4 4.6 4.4 5.1 4.8 5.2 5.3</td>
<td></td>
</tr>
<tr>
<td>1.3</td>
<td>0.3 0.6 1.3 3.0 4.2 4.6 5.8 6.8 6.6 7.3 7.9</td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td>0.1 0.6 2.1 3.9 5.4 5.9 7.7 11.9 11.0 11.8 14.1</td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td>0.0 1.3 2.2 4.6 7.3 10.9 14.2 15.5 15.3 19.0 21.5</td>
<td></td>
</tr>
<tr>
<td>1.6</td>
<td>0.0 0.8 5.0 4.9 9.5 11.5 18.1 16.3 16.0 27.0 31.0</td>
<td></td>
</tr>
</tbody>
</table>

F-testd) 1/2倍 1.2倍 1.4倍 1.6倍 1.8倍 2.0倍 2.2倍 2.4倍 2.6倍 2.8倍 3.0倍

注）a) 供試品種「褐の峰」、99年4月21日播種。4月28日定植の同一品種4本植。
b) 黒黄地から9月1日までに鉢植栽培で実施。
c) 分散分析により危険率5％で各区の数値間に有意差が認められなかったことを示し、
 「**」を付した数値には、p<0.05で危険率5％で有意差が認められることを示す。
 「*」を付した数値には、p<0.05で危険率5％で有意差が認められなかったことを示し、
 n.s. は未検定で有意差が認められなかったことを示す。
も、6月22日では、1本植が6.4mmで最も太く、
以下、本数増加に伴い5.8, 5.4, 5.4, 5.0mmと減
少する。各区とも、栽培期間中における地際部茎径
の増加量は、栽培日数が経過するに従って鈍化し、
6月5日から6月22日の増加量は少ない。第1花
開花日は2本植区が6月7日で最も早く、次いで1、
3, 4木区の6月10〜11日、5本植区は6月13日
で最も遅い。開花節位は、1から4本植区までは、
定植株数が多いほど低くなる傾向がある。開花始か
ら朝顔始前日7月5日までの、1鉢あたり開花数合
計は、49〜50花の1、5本植区に比べ、3、4本植
区は56〜57花で多い。開花始から8月1日までの
開花数計計でみると、各区間に有意差はないが、開
花始から8月31日までの開花数計認は、5本植区
で540花だが、1、2本植区は476、486花で少な
い傾向がある。

6. 4本植れんげ仕立てにおける鉢容積が生育と開花に
影響及ぼす影響（試験6）

4本植れんげ仕立ての鉢容積が、栽培中の生育と、購
入後期間を含めた開花数に及ぼす影響を、輪転大輪
咲品種を用いて検討する。結果は図11、表10に示
した。

朝顔始開催週を基準にした週別平均開花数は、
朝顔始2週前は1/2倍区が0.7花/鉢・日で最も多く、
次に標準区が0.3花/鉢・日、2、4、8倍区は、ほ
ぼ無開花である。しかし、朝顔始1週前には、各区
とも開花し、開花数もほぼ等しく、朝顔始開催週の
花数は、標準区だけ少ない傾向があったが、朝顔始
1、2週後には、鉢容積の増加に伴って開花数も多
くなる傾向があり、3週後以降は、その差が顕著で
ある。1/2倍区の開花数は、朝顔始2週後以降の、
4〜5花/鉢・日でほぼ一定して推移し、標準以上の
容積区では、栽培日数が増えると日平均開花数も増
える傾向がある。開花始から朝顔始2ヶ月後（9月
6日）までの開花数合計は、鉢容積が大きいほど多
くなり、8倍区では962花/鉢に達し、標準区320
花/鉢の3倍近くに達している。朝顔始直後、7月
11から15日まで4日間の花径は、1/2、標準、2倍、
4倍区まではほぼ100mmで差がなかったが、8倍区
は110mmで、ほぼ10%大きい。

考察

花の品質に関しては、これまでに多くの研究成
果が報告されており、国内では土井（1996）や鈴木
（1999）によって総合的にまとめられている。か
つて、品質に関する研究は、果樹、野菜類を中心に
行われてきたが、1957年にAartsが「On the
keepability of cut flowers」を報告して以来、1970
年代には数回の国際シンポジウムにおいて花きの品
質が主要テーマにあげられるようになり、また植物
体内部の水分、糖、生成ホルモンなどを中心に生理
学的研究が活発に行われた（HaleyとS.Mayak
1979, 1981）。そして、Blanpied et al.（1985）や
Yang（1987）のグループにより、エチレングリセール
に関する代謝経路の解明から、発生変化の作用機序や
利用方法について報告されてきた。これら研究の範
囲は、基礎生物学的内容から実用的な管理方法まで
に及ぶ、以後数多くの応用的分裂を有目で検討さ
れている。このような成果が、国内、特に切り花の
消費拡大や生産振興上に果たした役割は大きい（流
通システム研究センター、1997）。

一方、鉢ものの品質に関する研究は、輸送に伴う
品質劣化の防止を主ない目的として、品質保持フィル
ムのパッケージによる効果（Harbaugh, 1978）、弱
光環境下における生体変化から出荷前順化の推奨
（Conover and Pool, 1984）や内生エチレングリセール
質の利用（土居ら, 1992）、そして輸送条件と室温
での品質劣化の関係（NellとBarrett, 1986）な
ど、多くの研究が行われてきた。しかし、これら研
究の多くは観葉植物を供試した実験であり、また、
品質の構成要因に対して、輸送中や観賞場所である
室内環境の影響を主眼に検討している。近年、鉢花
品目品種については、国内で流通量の多いスクラ
メンやエラチオールベゴニア、ポインセチアを中心
に報告されており、栽培方法をはじめ、栽培・輸送・
観賞の各場面における環境条件の影響からの検討が
精力的に行われている（前田・長村, 1998；前田
1999；松本ら, 2003；駒形, 2001）。花の品質は、
形状、鮮度、日持ち性などの要素を構成されるが、
鉢花の品質は、徐々に進行する老化を制御し、植物
生長を維持させるかがポイントである（土井, 1996）。
また、今西（2002）は、人間が生活する空間におい
て、銅塗植業の品種や量、配置などの要素が、入間の精神的・生理学的面に及ぼす影響を報告しているが、消費者が花に求める効果は、経済状況や生活様式など、様々な社会情勢の影響を受ける（西・種本, 1996）。

銅塗業ササガオの購入後の品質に関しては、構成要素やその基準については定義されていない。銅塗業ササガオの栽培・観賞方法については、江戸時代の朝鮮国譲をはじめ、今日まで数多くの専門書にとりあげられている（宮沢, 1925；荻原, 1931；三宅, 1934；花鳥, 1966；田口, 1998；小林, 2000）。これらは、アサガオをより身近な園芸植物として認識させ、アサガオの趣味家、営利生産者、消費者の広い層に技術を紹介した。しかし、その内容については、先人の著した内容を踏襲して、現代では入手困難な資料（例えば素焼鉢）の使用を推奨したり、ある種科学的な裏付けを明記せず、抽象的に記述されたものが、数多く見受けられる。

試験 1 の目的は、現在の生産者が慣行栽培した行灯アサガオの開花能力の検証である。その結果、生産者間で、朝顔前・中・後の開花数に大きな差異のあることが明らかになった。この原因は、試験 2 で論ずる品種固有差と、基肥量、銅塗用土の違いだと考えられる。なお、試験 1 では、朝顔市絶品から 8 月 31 日までの銅あたり開花数合計が、平均で 348 花で、他の試験に比べ少ない。これは、試験 4 から推察すると、購入後に追肥で処理した液肥濃度が N・200ppm と低かったことが原因だと考えられる。また、第 1 花開花日のは早場と、朝顔市前の開花数合計、朝顔市開催中の開花数合計には、関連性が認められず、開花が早い性質アサガオは、必ずしも朝顔市での開花が多く、購入後の開花数が多いとはいいえない。

試験 2 では、市販のアサガオ品種について慣行栽培における開花特性を明らかにした。現在の入間朝顔市で売買される行灯アサガオは、一般に裸鉢や白矮の入る青箱登築（アフセ）の大輪咲品種が普通となっているが、このことからわかるとおり、販売・購入時に重視するのとは、いわゆる見分けとしての外観である。そのため、生産・販売・消費の各者とも、購入後の開花数には、関心が薄い現状にあるが、本研究結果は、品種の選択が、購入後品質や購入者満足度を左右する、大きな要因であることを示している。また、同一系統間において、関花期の早い品種は、朝顔市前の開花数合計が多いとはいえず、朝顔市前・中・後の開花数合計は、それぞれの間との関連性は少なかった。

試験 3 では、行灯栽培におけるアサガオの SADH 剤処理方法を検討した。‘鶴の峰’ 1 本植え引栽培の主茎長から判断すると、SADH 剤無処理では、6 月 9 日頃からつるまき作業を行う必要がある。農業登録の適用される処理時期は、本研究の 1 回処理区「6 月 1 日」以前であるが、本葉枚数が多くなってからの処理は、つるまき作業開始日を遅せる効果が弱いため、出荷までの作業回数を減少させることが有効である。1 回処理「5 月 14 日」と 2 回処理は、つるまき作業開始を約 10 日遅せる効果があるが、1 回処理「5 月 14 日」は、6 月 11 日以降に主茎増加量が無処理区と同様になり、作業回数の減少は困難である。これら結果から判断すると、つるまき作業開始の遅延と作業回数現象を達成するためには、2 回処理は効果的である。この場合、1 回目を 500 倍希釈液で 5 月 5 日、2 回目を 1,000 倍希釈で 5 月 26 日に散布すれば、朝顔市で咲く花の花径に影響せず、購入後の開花数に対しても問題のないことが明らかとなった。本結果は、適用拡大の基礎資料として、有効である。

一方、生産現場では、アサガオに対する SADH 剤処理は、開花促進効果があると認識されている。本研究では、第 1 花柄を低下させる効果は認めたが、第 1 花開花日や到花日数への影響は認められなかった。しかし、自然日長条件下でも、低節位の着花軒を安定させる効果があるため、これが開花を早める効果に誤解されている考えられる。アサガオに対する SADH 剤処理は、長期的な開花数も増加させるが、これは着花台数安定効果の反映と考察する。一方で、SADH 剤処理は、朝顔市期間中の主茎開花の株数を減少させたことから、主茎・側枝の開花バランスに影響を及ぼすことが明らかとなった。

試験 4 では、購入後の行灯アサガオに対する追肥方法を求め、開花数合計の増加効果から検討し、購入時の緩効性肥料の置放と、液肥による定期的な追肥が有効であることを明らかにした。購入時に緩効性肥料を施用する場合、施肥 1 か月程度のプロミック® 鉄剤肥料スタンダードタイプでは、1 鈴あたり 8 粒
（3要素で1.5g/株）以上が適量である。週1回の
液肥による追肥管理では、Peters Professional®
General Purpose（N-P₂O₅-K₂O=20-20-20）の500
倍希釈液（N＝400ppm）が効果的である。液肥種
類は、肥料価格や入手の利便性を考慮すると、リン
酸成分比の高いPeters Pro®Blossom Booster（N-
P₂O₅-K₂O=10-30-20）よりも、3要素が等量配合
された肥料の使用が適当である。これら結果は、長
期的な開花数に対して、窒素濃度の影響が大きいこ
とを示している。細谷（1985）は、生育相および窒
素吸収から鉄砂品目を分析し、また、細谷（1995）
は、アサガオの養分吸収特性を報告しているが、本
研究結果は、これら報告内容と合致している。アサ
ガオ特に購入後の行灯仕立は、本葉を展開させな
がら茎が伸長し、開花を遅らせることから、シクラ
メンなどと同様に、長期開花型に含まれると考え
られる。

開花後の花が引き続き、購入後の開花数を70％増
加させる効果があり、また、開花株率を5〜15
ポイント増加させる。このことは、購入後に無開花とな
る確率を低くすることができる。花が引き続きの労力負担は
小さくないが、長期間に美しい花を楽しむという観
点からみると、有効な管理方法である。

試験5では、現在の入谷朝顔市で最も一般的に使
用される径18cmプラスチックス製錐鉄に対する定
植本数が、生育・開花に及ぼす影響を検討した。

アサガオの行灯仕立は、昭和初期に大阪の吉田市
兵衛（秋草園）が考案したとされ、特に大輪系の開
花をより大きく美しく見せる栽培法である（米田、
1985）。その基本は、1鉢1本植であり、現在でも、
全国各地の大輪朝顔競花・展示会では、径15〜18cm
鉢での1本植が普通である。一方、戦後の入谷朝顔市
市では、豪華さが重視されたため、4本植が主流と
なっている。

本研究において、1鉢あたり定植本数の増加は、生
産段階において、草丈と節数抑制、それに伴うつ
なる枝葉の軽減に有効であり、開花節点の低下に
よる草姿改善から品質向上に寄与していることを明
らかにした。また、定植本数の増加は、朝顔市前か
ら開催期間中の開花鉢数の増加を高めたが、購入後の
開花数に対する増加効果は少ない。本研究で検討し
た最大の定植本数である5本植は、主茎長の増加量
が少なく、1〜4本植に比べ、第1花開花日が遅れ
る傾向があった。5本植を実用化する場合は、播種
時期や肥培管理の検討が必要である。

試験6では、購入後の開花数と鉄鉬容積の関連を検
討し、容積が大きいほど購入後も多くの花を楽しむ
ことができることを定量的に証明した。特に、慣行
比8倍容積の16鉢では、花径が大きく、開花始か
ら朝顔市2ヶ月後までに1,000花近くを咲かせるこ
とから、差別化商品として有望である。しかし、容
器の大型化は、開花始が遅延する傾向があり、栽培
管理の検討、大鉱輸送方法や店頭での設置方法に検
討が必要である。

謝辞

本研究を実施するにあたり、アサガオ野生種の種
子を御提供いただいた茨城大学農学部 丹羽 勝博
士、実験遂行に際し快くご協力いただいた入谷朝顔
生産組合長 半良真一氏、江戸川花園芸組合長 眞
利子久住氏に深く感謝を申し上げる。また、本論文を
まとめにあたり、ご助言をいただいた江戸川分
場長 川村真次氏、並びに実験にご協力をいただいた、
江戸川分場 森田武司技務長、故村村金藏、斎藤一男、
古山善三郎、二戸清四、井川津代志の各氏に、衷心
より感謝する。

摘要

現在の入谷朝顔市で一般的となっている4本植の
行灯仕立アサガオについて、購入後2ヶ月間の開花
数に着目し、生産技術の改善、および購入後の管理
方法を検討し、以下の結論を得た。

1. 種苗会社から市販される川浜・綱葉系の大輪咲
品種は、第1花開花日の早晩、購入後の長期的な
開花数について、品種間差が認められる。

2. SADH剤の2回処理は、つるまき作業の開始
時期を遅らせ、作業回数を減少させることから、
生産効率を大幅に改善する。朝顔市開催の花径
に対する影響を考慮すると、ビーナイン水溶剤
80®では5月5日に500倍、5月26日に1,000
倍希釈液を散布することが適切である。

3. 購入後の葉色改良と開花数合計を増加させるた
めには、朝顔市以後の追肥が重要であり、①購入時3要素各1.5g以上で効果的肥料を用いる。②週1回、3要素等量配合の液肥（N-400ppm）を用いることが効果的である。

4. 鉢あたり定植本数の増加は、購入後を含めた開花数増加に対する影響は大きいが、主茎長を小さくし、開花時期を遅らせると影響がある。

5. 購入後の一週間以上開花数増加は、鉢容積に依存するところが大きい。容積16L鉢の4本植は約1000株を咲かせることができ、差別化商品として有望である。

引用文献

浅野次郎（2002）農業経済学で見た地域及び都市府県の花き生産の特徴。花き研究所研究2：27-44。

Blanpied,G.D., S.F.Yang, and M.S.Reid（1985）Ethylene in postharvest biology and technology of horticultural crops. HortScience 20:39-60。

土井元章・水野秋美・今西英洋（1992）アフリカホウセンカの流通段階における品質保持に及ぼすSTS処理および光環境の影響。園芸雑誌61:643-649。

土井元章（1996）品質、農業技術体系花卉編4. 農文協。東京。97-102。

荻原時雄（1931）朝顔最新花卉園芸綜合園芸大系第9篇。養文堂。東京。pp.1-135。

Haley,A.H. and S. Mayak（1979）Senescence and postharvest physiology of cut flowers (1). Horticultural Reviews 1:204-236。

花鳥得二（1966）大輪朝顔の作り方（日本農芸会編）。大漢書店。東京。pp.124-133。

橋本長夫（1982）花きに対する生長抑制剤の作用特性に関する研究。東京農試研究報告15:pp.3-72。

平野一（2001）江戸園芸の仕掛人「連」から植木屋へ。江戸のガーデニング。歴史と旅28。秋田書店。東京。pp.66-71。

細谷耕（1985）ポットマムならびに数種鉢物花きの養分吸収経過と施肥に関する研究。営業園芸試験報告1。

細谷耕・三浦泰昌（1995）新版花卉の栄養生理と施肥。農文協。東京。pp.28-32。

今西弘子・鈴木昭（1996）品質、農業技術体系花卉編4。農文協。東京。pp.25-42。

今西弘子（2002）植物の存在がオフィスで働く人々に与える心理的効果。園芸学研究1:71-74。

岩渕健治（2000）江戸の園芸文化の発達。伝統の朝顔Ⅲ。国立歴史民俗博物館（編）。財団歴史民族博物館図説会、千葉。pp.6-19。

JA全国肥料農薬部（編）（2002）クミアイ農薬総覧2003。全国農村教育協会。東京。p.1619。

川野嘉一。国立歴史民俗博物館（編）（1999）入谷朝顔市について。伝統の朝顔Ⅰ。財団歴史民族博物館図説会、千葉。pp.44。

小林裕美。渡邉重吉郎。北井要秀（2000）変化朝顔の育て方。伝統の朝顔Ⅱ。国立歴史民俗博物館（編）。千葉。pp.69-79。

駒形哲幸（2001）シクラメンの品質変化に及ぼす観賞条件の影響。園芸雑誌1(70):329。

前田茂一。村松智司（1998）鉢花の品質保持に及ぼす栽培管理方法の影響（第1報）シクラメンの品質保持に及ぼす施肥の影響。奈良農試研究29:1-8。

前田茂一（1999）鉢花の品質保持に及ぼす栽培管理方法の影響（第2報）数種鉢花の品質保持に及ぼす遮光処理と観賞時の環境条件の影響。園芸雑誌2(8):389。

水戸喜平（1999）次世代の花き生産22市街化農地で江戸ゆかりの都市農業を営む真利子農園。施設園芸41(4):40-43。

三宅騏一。今井喜孝（1934）原色朝顔園鑑。三省堂。東京。pp.17-26。
宮澤文吾（1925）イポメア 草花園芸 養賢堂 東京 pp.284-311.
小学館クリエイティブ（編）(2003) 朝顔・酸漬 週刊四季花めぐり 42. 小学館 東京 41pp.
須田晃・湯井正彦・西尾誠一（2003）主要鉻花の栽培後半の培養液濃度が室内での日持ちに及ぼす影響 園芸雜誌 272: 227.
瀧沼昌道（1995）東京都における花き生産の立地と 成立条件 農業経営研究 33: 30-37.
田中宏（1993）生長調節物質の利用 農業技術体系 花卉編1 農文協 東京 pp.271-283.
東京都農業試験場（1995）農業経営指標事例集（花
き編） pp.51-53
東京都産業労働局農林水産部（2003）病害虫防除基準 p.490.
渡辺好孝（2001）変化朝顔ブームを支えた二人の男 江戸のガーデニング 歴史と旅 28 秋田書店 東京 pp.78-83.
米田芳秋（1995）アサガオ 江戸の贈りもの一夢から 科学へ ポピュラーサイエンス 遺伝学普及会編集委員会（編） 奥華房 東京 163pp.

「Home Page」（2003年8月1日現在）
台東区（2002）台東区ホームページ http://www.city.taito.tokyo.jp/
和田清俊（2002）アサガオの生理学（総合研究大学院大学共同研究プロジェクト「生物形態資料画像データベース」） http://www.sc.niigata-u.ac.jp/biology/index/wada/index.html
米田芳秋（1998）アサガオ類画像データベース（総合研究大学院大学共同研究プロジェクト「生物形態資料画像データベース」） http://protist.i.hosei.ac.jp/Asagao/Yoneda_DB /J/menu.html

Summary
Key words : Ipomoea nil, morning glory, potted plants, number of flowering.

“Iriya Asagao Matsuri "(name is widely known as "Iriya Asagao Ichii") held for three days from July 6 of every summer is most famous festival of japanese morning glory (Ipomoea nil). A standard list of articles in modern this festival is “Andon-zitate’that four stocks with a different colors were planted in a pot.In this study ,it paid attention to the number of flowering about of “Andon-Zitate” for two months after the purchase , it was examined about the way of managing it after the purchase and the
way of growing it before shipping.

1. There was a difference between SUHAMA and SEMIBA a large flowering strains of the morning glory, and which put on the market by a seedling business company in the number of accumulation flowering until August 31.

2. Two times treatment of SADH (daminozide) for a potted morning glory is more effective on a Andon-Zitate because of easy training of elongated stems. When an influence on the flower diameter in the holding term of “Iriya Asagao Matsuri” is taken into consideration, it is the way of being suitable and of dealing with it to spray the growth retardant (containing 80% SADH) with 1,000 times first at May 5 and second with 500 times at May 26.

3. There are two effective ways for improves a leaf color after the purchase and total number of flowering period from “Iriya Asagao Matsuri” till 31 August. One is giving slow release fertilizer concluded same percentage of majore elements. Another one is giving liquid fertilizer same percentage of majore element with N-400ppm once a week.

4. Number of plants per pot have many influence on growth and flowering period. But, an influence on the total number of flowering is small.

5. The place of the total number of flowering after the purchase to depend on the capacity of the pot. If used a 168 pot on four plants planted Andon-Zitate, it is so possible to let 1,000 flower blooms until September 16.
図版 1

1 入谷朝顔まつりの状況と
行灯仕立アサガオ

2 アサガオ生産園場
（江戸川区鹿島 5）

3 市販の育苗入大輪咲品種

4 鉢容器の影響 (試験 6) (2001年9月撮影)