[花き類病害の双方向型総合診断・防除システムの開発および公開(高度化事業)] キキョウラン紋枯病(新称)の発生

小野 剛·星 秀男 (生産環境科)

【要 約】東京都八丈町のキキョウランに発生した葉枯れ症状は, *Rhizoctonia solani* AG-2-2 (ⅢB) が病原であることが明らかとなった。病名を紋枯病と提案する。

【目的】

八丈島で生産されている切り葉用のキキョウラン Dianella ensifolia (ユリ科) に未知の葉 枯れ症状が発生し問題となっている。そこで本症状の発生に関与する病原菌を特定し、防 除の資料とする。

【方 法】

1)発生状況および病徴を記録した。2)病徴部から病原菌を常法に従って単菌糸分離し、得られた菌株を培地ごと健全なキキョウランの葉に無傷で接種後,数日間湿室状態にした。また、滅菌土壌に数種植物を植え、発芽を確認後、分離菌を接種し、それぞれの発病の有無を観察した。3)病原菌のPDA 培地上での諸性質を調査し、病原菌を同定した。

【成果の概要】

- 1) 東京都八丈町の施設栽培で発生した。初め葉に褐色~赤褐色の小斑点を生じ、次第に拡大し、周辺は赤褐色で明瞭、中央部は灰白色で紡錘形~不整形の紋枯れ状の大型病斑となり、後に葉枯れ症状を呈する(図1)。高湿度下では病斑周辺にくもの巣状の菌糸を豊富に生じる(図2)。
- 2) 病斑部からは同一の培養性状を示す糸状菌が高率に分離された。健全なキキョウランの葉への接種において、接種3~4日後に小斑点を形成、7日後には紋枯れ症状を再現した。また、ブロッコリー、ベニバナ、ニチニチソウおよびナスにも葉枯れを生じたが、幼苗への土壌接種ではブロッコリーのみに苗立枯れ性の病原性を示した(表1)。いずれの接種でも病斑部からは接種菌が再分離された。無接種区は発病がみられなかった。
- 3) 病原菌は PDA 上ではじめ淡褐色,のちにやや濃くなり,輪紋は不明瞭。分生子を形成せず,菌糸の分岐点にくびれを生じ,分岐点近くにドリポア隔壁を有する。かすがい連結は認められなかった。主軸菌糸の幅は $6.9\sim9.7\,\mu$ m,菌糸先端細胞の核数は $4\sim12$ 個であった(表 2 ,図 3)。また,*Rhizoctonia solani* 標準菌株との対峙培養では AG2-2 とのみ菌糸融合が観察され,培養型はIIIB であった。生育温度は $10\sim35$ ℃で,最適生育温度は 30℃であった(図 4)。完全世代は観察されなかった。以上より本菌を *Rhizoctonia solani* AG-2-2(IIIB)と同定した。本菌によるキキョウランの病害は記録がないため,病名を紋枯病(Sheath blight)と提案する。
- 4) まとめ:八丈島で発生したキキョウランの葉腐れ症状は, R.solani AG-2-2 (ⅢB) による病害であった。本病は末期には葉枯れとなるが, 発病初期の灰白色, 紡錘形の大型病斑が特徴的であることから, 病名を紋枯病と提案する。本菌は多犯性であるため, 他の島内特産作物での発生に注意を要する。 (関東東山病害虫研究会報投稿予定)



図1 キキョウランの病徴(左:原病徴,右:接種による再現)

図2 高湿度下で見られるくもの巣状の菌糸

図3塩酸ギムザ法による核の染色

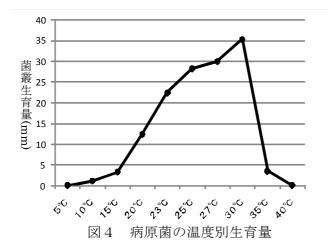


表1 病原菌の各種植物への病原性

接種部位(無傷) a) 接種部位(無傷) a) 接種植物 葉 土壌 キキョウラン + ブロッコリー + + + ベニバナ + - ニチニチソウ + - トス + -			/ · · · · · · · · · · · · · · · · · · ·			
キキョウラン + - ブロッコリー + + ベニバナ + - ニチニチソウ + -		接種部位(無傷) a)				
ブロッコリー + + ベニバナ + - ニチニチソウ + -	接種植物	葉	土壌			
ベニバナ + - ニチニチソウ + -	キキョウラン	+	_			
ニチニチソウ + -	ブロッコリー	+	+			
	ベニバナ	+	_			
ナス + -	ニチニチソウ	+	_			
	ナス	+	_			

a) +:病原性有り, -:病原性無し

表 2 キキョウラン分離菌と既知 Rhizoctonia solani との形態比較

菌株	主軸菌糸の	ドリポア	かすがい	核数	菌糸	培養型
(分離源宿主)	幅(平均)a)	隔壁	連結	(平均)	融合群	
Rky-1	6.9~9.7	有	無	4~12	AG2-2	ШВ
(キキョウラン)	(8.0)			(7.3)		
R. solani ^{b)}	6.2~10.8	有	無	4~8		
	(8.7)					