乳酸発酵によるカブ漬に関する試験

オ 1 報：乳酸発酵によるカブ漬の製造段階における微生物および化学的変化

宮尾茂雄・青木睦夫

Studies on Fermented Turnips

Part I. Microbial and Chemical Changes of Fermented Turnips during Fermentation

Shigeo MIYAO and Mutsuo AOKI

Summary

Changes of sugar, acid and microorganisms in the liquid part of fermented turnips were investigated. The yield of lactic acid was higher when the turnips were fermented at 28-30°C for about a week after the preliminary pickling in which they were packed tightly into a jar with 3.0% salt and covered with a weight for pressing down at below 10°C for about a week.

The trend of microbiological and chemical changes during fermentation was similar to that of sauerkraut. Although *Lactobacillus plantarum* appeared to become a predominant flora and finally yeast increased gradually.

Lactic, acetic and succinic acid were produced, whereas malic acid was disappeared during fermentation.

緒 言

近年、消費者の嗜好は、健康面における配慮もあると思われるが、低塩化された漬物類が好まれる傾向が顕著である。一方、醗酵も好まれる方向もあり、ラッキョウ漬、鶏鶏風酢漬などの酢漬類が伸びている。これらの酸味の増加傾向は、現代人の味覚的な要求とともに、低塩化による漬物の保存性低下を、酸をふやし、pHを低く抑えることによって補うということからもきている。この酸の補う方法としては、酢酸・クエン酸・リンゴ酸などの有機酸を人工的に添加する方法がある。長所としては製造が容易で、短時間に、大量に製造できることがあ る。しかし、野菜独特の風味に欠け、人工的な味が出てしまう欠点がある。もう一方の方法は、醗酵料を添加することなしに、自然の乳酸発酵を利用し、酸の増加をはかる方法である。そこで、市場に多く出荷され、普及性も高いと思われるコラップを用いて、乳酸発酵により漬物の製造を試み、製造過程における微生物の挙動、および化学的諸変化について検討を加えたので報告する。

実験方法

1. 漬込方法

コラップに食塩を最終濃度3.0%になるように添加し、コラップ全重量の半量の蒸水を加え、一晩荒渕した後、水洗し、再び食塩を3.0%なるよう添加し、一試験区約7-10Kgになるように、コラップをポリ容器に入れ、コラップ重合重量の重石を置いた後、5, 10, 20°Cで本漬を行い、恒定期的に各本漬試験区よりコラップを適量採取し、28-30°Cで雑漬を行った。発酵漬物の一連の製造については、
乳酸発酵によるカクブジに関する試験（第1報）

Fig.1に示した。

2. 有機酸の定量
0.02N水酸化ナトリウム溶液で滴定し、本液および室
温中における酸の変化を調べ、乳酸として算出した。室
温における各種有機酸の変化については、山下らの方
法に準拠し、有機酸類をフルールエステル化し、ガスクロ
マトグラフィーによって行った。

3. 糖の定量
ソモギ変法により定量した。

4. 生菌数の計数
一般細菌数は、標準寒天培地で30℃3日間培養後、乳
酸菌数は0.12%のソルビン酸カリウムを添加したB.C.P.
加ブドウ糖寒天培地で、30℃3日間培養後、グラム陰性
細菌数は、C.V.T.寒天培地にて、25℃、3日間培養後、
それぞれ計数した。

5. 細菌の分離および同定
各試験区の漂液より標準寒天培地を用いて、塗抹法に
より細菌を分離し、20〜30個の菌落の出現した標準寒天
培地上より、全細菌を同系統し、純粋培養後、菌落の形態、
グラム染色性、動鏡検査（形態、運動性、芽胞の存在
の有無）から、約280株に整理し、その後、O.F.テスト、
カターレーゼ、オキシダーゼテストを実施し、さらに大ま
かな群にわけた後、それぞれの代表的な菌株については、
既報2）に準じて同定した。

6. 分離菌株の耐塩性
供試菌株は、あらかじめ、基礎培地（トリプチアース
ペプトン0.5%、醤油エキス25%、ブドウ糖0.1%pH6.0)
を用いて2日間30℃で前培養した。一方、耐塩性をみる
ために、食塩を、それぞれの濃度が0, 2, 4, 6, 8
%になるように、基礎培地に添加し、中試験管に、それ
ぞれ10mlずつ分注し、歳時をし、次に、前培養によって
得た菌液を、均一になるよう振とうした後、上記各
塩化に、無塩の、それぞれ0.1%ずつ塩化し、30℃で48
時間培養した。そして、分光光度計で、波長660nmにお
ける吸光度を測定し、対照における吸光度と、食塩含有
培養液における吸光度との比から耐塩性を表した。

7. 分離菌株のpH耐性
6と同様の塩化にて、2日間30℃で前培養した後、そ
の菌液を、pHをそれぞれ4.2, 4.4, 4.6, 5.0, 5.5に調整し
た培養液（10ml）に、無塩的に、それぞれ約0.03%ずつ
塩化し、30℃で培養した。その際、7日間経過後も、増
殖が認められなかったものを（-），2〜7日目の間に
増殖が認められたものを（+）、1〜2日目の間に増殖
の認められたものを（++）、1日以内に増殖が認められ
たものを（+++）で表現した。

実験結果
1. 本濁条件の検討
サワクラウッドの原料野菜であるキャベツなどと異
なり、ヨガブにおいては、糖の浸出に時間要するので、
適度な乳酸量を得るためには、ヨガブから漂液への糖の
浸出工程（本濁）が必要である。そこで、ヨガブを、5
, 10, 20℃にて本濁し、超音波に、漂液中の醤濃度、酸
濃度への変化を調べたが、その結果をFig.2に示した。
20℃の本濁では、2日後に醤濃度が0.34%に達した後は
急激に減少し、以後増加しなかったが、一方、醤は2日
目に低下から上昇し、6日目に0.33%に達した後、減少
した。これは、20℃、醤の浸出速度は、低温下におけ
る場合よりも遅いが、一方、微生物の増殖も盛んである
ため、醤の浸出速度よりも微生物による醤の消費の方が
上回ったために、醤の蓄積が起こらなかったものと考え
られる。10℃では、醤濃度は、6日目に0.45%に達した
後、急激に減少した。酸濃度は、出発時0.06%であった
が、9日目においても0.15%に達したに過ぎなかった。
これは20℃で乳酸菌の増殖が盛んであったが、10℃にお
いては、増殖が抑制されたためと思われる。5℃では、
微生物の増殖、活動はさらに抑制されたために、醤濃度
は、ほぼ直線的に增加し、6日目では、10℃とほぼ同濃度の0.46％、10日目には、0.62％に達した。以上の結果から、室温における発酵の前工程としての本潰は、低温下で行うことが望ましいことがわかった。そこでつぎに、10℃で本潰を実施したコガナを用いて、本潰開始後から10日間を追って、室温を28～30℃で行い、異なる期間で本潰したコガナの室温中における生酸変化について調べたが、その結果をFig.3に示した。4日間本潰したコガナを室温した場合は、室温開始後4～5日目で、酸濃度は0.61％を最高に達し、以後減少した。6日間本潰したコガナを室温した場合は、室温開始後、約7日目で0.94％に達した。しかし、2日間本潰した場合と異なり、酸の減少は非常に緩慢となり、10日目においても、0.91％にとどまった。また、9日間本潰したコガナを室温した場合は、6日目に0.80％に達した後、減少した。以上から、室温によって高い酸度を得るには、適当な期間本潰する必要があり、本潰期間が短すぎても、長すぎても、低い酸度にとどまることはなかった。したがって、コガナの本潰は、10℃以下で約1週間行い、その後、室温を約1週間行ったら、製品とする場合には、最も高い酸度を有する発酵タブネ識を得られることがわかった。

Fig.2. Changes of sugar and acid in liquid part of fermented turnips during ‘Honzuke’ (step of pickling) at various temperatures

Fig.3. Changes of acid in liquid part of fermented turnips during “Honzuke” (step of pickling) at 10℃ and “Murozuke” (step of fermentation) at 28～30℃

2. 室温中の微生物の量的変化
10℃6日間本潰したコガナの室温中における微生物の量的変化およびpHの変化をFig.4に示した。室温開始時24×10⁵個存在していた球状乳酸菌が適温温度下において急激に増加し、1日後には、3.8×10⁷個に達し、それ以上となる乳酸の生成によりpHは低下し始め、原料オヴに多く付着していたグラム陰性細菌は、減少した。2日目からは、桿状乳酸菌が増加し始め、3日目には、
乳酸発酵によるカブ漬に関する試験 (第1報)

10^8/mLを超える菌量に達し、pHはさらに低下し、6日目にpHが1.25になった。この時点での乳酸菌の急激なpH低下作用により、pHに弱い球状乳酸菌は減少し、グラム陰性細菌は、4日目には死滅した。一方、酵母は、室温開始時に10^5/mLであったが、pHが低下した2日目以降から急激に増加し、6日目には、10^8/mLに達した。

Fig.4. Changes of viable microorganisms and pH during “Murozuke” (step of fermentation) of turnips.

3. 室温中の微生物群変化

室温の経過にしたがって漬液より分離した微生物の同定を試みたところ、Fig.5に示すように、室温初期 (0〜2日目) に分離された微生物の多くは球状乳酸菌であり、その他に、Micrococcus, Pseudomonas, Enterobacteriaceae, クローバを含む、Erwinia, Enterobacter aerogenes, Enterobacter cloacae, Proteus sp. などと同定された。なおそれらの菌株の性状については、Table 2, Table 3に示した。

Fig.5. Changes of microbial flora during “Murozuke” (step of fermentation) of turnips.

4. 分離株系の耐塩性

荒漬け、生漬け開始時においては、食塩を散布する関係上、コップから水分が浸出してくれる環境において、一時的に高濃度の食塩環境下において、微生物の耐塩性の差異により、淘汰されることが予想される。そこで、分離した代表的な菌株を用いて、それらの耐塩性について調べたところ、Fig.6で示す結果を得た。Corynebacterium, Micrococcus, Pseudomonas, Pseudomonas fluorescensは、食塩濃度が4.0%では、ほとんど増殖できなくなる、6.0%では、増殖できなかった。一方、Micrococcus va-
Table 1. Characteristics of isolated bacteria.
Lactic acid bacteria

<table>
<thead>
<tr>
<th>Gram</th>
<th>L3</th>
<th>L1</th>
<th>L2</th>
<th>L4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cell</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>R</td>
</tr>
<tr>
<td>Motility</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Catalase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>OF</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>Growth at 15°</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at 37°</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at 45°</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Survive 60°/30min</td>
<td>-</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Growth at pH 4.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth at pH 8.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth in NaCl 6.5%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth in NaCl 10%</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sline formation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>NH₃ from Arginine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Esculin hydrolysis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactic acid</td>
<td>D(-)</td>
<td>DL</td>
<td>DL</td>
<td>DL</td>
</tr>
<tr>
<td>Final pH</td>
<td>4.3</td>
<td>3.8</td>
<td>4.0</td>
<td>3.8</td>
</tr>
<tr>
<td>Acid from Ara</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lac</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mnt</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Raf</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rha</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sal</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sor</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Suc</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Xyl</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Gas from Glu</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 2. Microbial characteristics of isolated strains

<table>
<thead>
<tr>
<th>Microbial characters</th>
<th>A1</th>
<th>A2</th>
<th>A22</th>
<th>P23</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram reaction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cell</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Spore</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Motility</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Flagella</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pigment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Fluorescent pigment</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Catalase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Oxidase</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Decomposition of gelatin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>starch</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>esculin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>arginine</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth in MacConkey media</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SS media</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KCN media</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>media at 42°C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V.P. reaction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Assimilation of citric acid</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Indole</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Nitrite from nitrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Acid from carbohydrate</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Arabinose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Lactose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Maltose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Mannitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salicin</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sorbitol</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sucrose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Xylose</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Glucose: oxidative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fermentative</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

L 3: Leuconostoc mesenteroides
L 1: Streptococcus faecium
L 2: Pediococcus pentosaceus
L 4: Lactobacillus planatarum

A1: Micrococcus varians
A2: Pseudomonas fluorescens
A 22: Coryneform bacteria
P 23: Pseudomonas sp.
Table 3. Microbial characteristics of isolated strains
(Enterobacteriaceae)

<table>
<thead>
<tr>
<th>Microbial characters</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P10</th>
<th>P16</th>
<th>P19</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gram reaction</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cell</td>
<td></td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
<td>r</td>
</tr>
<tr>
<td>Motility</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Yellow pigment</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Catalase</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Oxidase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Decomposition of</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gelatin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>esculin</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>arginine</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lysine decarboxylase</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ornithine decarboxylase</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Growth in KCN media</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>V.P. reaction</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Assimilation of citric acid</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>M.R. reaction</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Indole</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gas production (glucose)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I.P.A. production</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>H2S production (TSI media)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrite from nitrate</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Acid from carbohydrate</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arabinose</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Glycerol</td>
<td></td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactose</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mannitol</td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Raffinose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rhamnose</td>
<td></td>
<td></td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Salicin</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sorbitol</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sucrose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Xylose</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

P7: Enterobacter aerogenes P10: Proteus sp. P16: Enterobacter aerogenes
P19: Enterobacter cloacae

dで、pH4.2以下になって生育できなくなったが、室温の微生物変化において、Enterobacteriaceaeに属する菌種が長く生存したのは、この高い耐酸性とpH耐性に帰因するものと考えられた。

5. 室温中の各種有機酸の消長

室温中の各種有機酸の消長をFig.7に示した。室温開始時において、乳酸、コヘク酸、酢酸はそれぞれ20mg/100g、7.5mg/100g、4.0mg/100gであったが、室温の進行にともない、それぞれ増加し、2日目以降からは急激に増加した。そして6日目には、それぞれ1120mg/100g、16.0mg/100g、38.5mg/100gに達した。これらは、いずれも、微生物、特に乳酸菌の増殖および活動の結果と考えられる。一方、室温開始時に、13.0mg/100g存在していたリン酸は、3日目にこん跡程度となり、4日目以降は検出されなくなったが、これは、微生物が利用されたものと考えられた。

考察

発酵過程を製造するにあたっては、原料野菜の特徴に適した発酵管理技術が必要と思われる。サラダクラフト
Fig. 6. Salt tolerance of bacteria.
Bacteria were cultivated in media (0.5 % peptone, 0.25% Yeast extract, 0.1% glucose, pH 6.0) containing certain amounts of NaCl at 30°C for 48 hrs.
(O.D.0=O.D. at 0% NaCl after 48 hrs)

Table 4. Effect of pH on the growth of various bacteria isolated from turnip or fermented turnip

<table>
<thead>
<tr>
<th>Bacteria</th>
<th>Growth (pH)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4.2</td>
</tr>
<tr>
<td>Coryneform bacteria</td>
<td>-</td>
</tr>
<tr>
<td>Micrococcus varians</td>
<td>-</td>
</tr>
<tr>
<td>Acetobacter sp.</td>
<td>-</td>
</tr>
<tr>
<td>Proteus sp.</td>
<td>-</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacter aerogenes</td>
<td>-</td>
</tr>
<tr>
<td>Enterobacter cloacae</td>
<td>-</td>
</tr>
</tbody>
</table>

The cultivation was carried out in PYG media at indicated pH at 30°C. Symbols indicate no growth within 7 days (—), growth within 7 days (+), 2 days (★★), 1 day (★★★).

は、キャベツを原料とし、それを細切し、約2%の食塩で濁した発酵汁で製造された発酵酒であるが、細切され、しかも強く重石

されるので漬汁中の糖の浸出が急速で、乳酸菌の活発し、約28°Cの発酵温度で十分な量の乳酸が生成される。このような、葉菜類で、糖分も十分にあるキャベツのような原料を用いて発酵漬物を製造する場合は、それぞれの発酵管理が必要である。しかし、本報で述べたような根菜類の場合は、乳酸の原料ともいえる糖を充分に濁汁中に浸出させる必要がある。なお、本実験の結果で明らかにしたように低温下で約1週間未満を行ったものは不食用になったが、本実験期間を短期間あるいは長期間行った場合には、酸濃度の低い発酵汁物になった。これらの原因については以下のように考えられる。すなわち、本実験で短期間、長期間の場合は、糖の浸出が充分でない場合には、つぎの原因（発酵工程）に移行するために、乳酸の生成が不足の状態が続き、酵母の増殖が活発となり、その結果、酵母による乳酸の消費が進行し、充分な酸度を得ることができなかったためと推定される。一方、長期間となった場合は、本実験における糖の浸出は充分であるが、乳酸菌が増殖困難な低温下でも、低温細菌の増殖が行うため、本実験期間内においても糖の消費が始まります。さらに実験を実施した場合では、乳酸菌よりも、それらの低温細菌が一時的に活発になるので、乳酸菌と活動する前に糖の減少が生じ、それが原因となって、充分な酸度を得ることができなかったものと推定される。したがって、春や秋などの低温から高温に自然発酵させた場合、失敗すること（乳酸量が高く上がらない）が多いのは、

Fig. 7. Changes in the amount of organic acids during “Murozuke” (step of fermentation) of turnips.
乳酸発酵によるカブ漬に関する試験（第1報）

糖含量の少ない材料を使用したためか、あるいは、低温下での本漬を行わないので発酵させたため、雑菌により醤が消費され、乳酸生成量も少なくなったことによるものと考えられる。したがって、恒常的に良質な発酵漬物を製造していくには、有酸乳酸菌および芳香を付与する酵母など、発酵漬物に有用な微生物をうまく活用することが必要である。原料に付着してくる雑菌の増殖、活動を抑制するなどして、うまくコントロールし、原料重量に含まれる糖を有効的に乳酸発酵させる必要があると思われる。その目的のためには、材料選択の形、糖含量などに基づいた適切な選択が必要で、雑菌の汚染が高ければ、充分に洗浄することが重要であると思われる。また、食塩濃度を一定に保つと同時に、均一に原料中に分散されるとともに望ましい。さらに、重石重量、低温下における糖の浸出期間、発酵温度、発酵期間は、特に品質に影響をおよぼすと考えられるので、適切な管理が必要であると思われる。

摘 要

乳酸発酵によるカブ漬の製造を試み、本漬、室漬の条件を検討したところ、10℃以下で約1週間本漬した後、28℃-30℃で室漬を約1週間行ったものが、酸度も高く良好であった。室漬中の微生物変化はサワーキラウタ3, 5) などと同様に、初期には、球状乳酸菌（Leuconostoc mesenteroides, Streptococcus faecium, Pediococcus pentosaceus）、コリエン菌（Micrococcus, Pseudomonas, Enterobacter, Erwinia）が主に分離され、中期以降は、桿状乳酸菌のLactobacillus plantarum と酵母がほぼ同数分離されるようになった。また室漬中の有機酸変化について調べたところ、乳酸、酢酸、コハク酸が増加し、リンゴ酸は減少し、消失した。

文献

1) 山下市一、土村太郎、吉川誠次、高波修一：農化, 48, 165 (1974)
2) 宮尾茂雄、青木隆夫：食品工誌, 25, 327 (1978)
3) PEDERSON C. S. : New York State Agric. Exp. Sta. Tech., No.168 (1930)