Studies on commercial values and qualities of cut flowers on Bouvardias, *Bouvardia hybrida* hort.

Yutaka HAMADA, Hironari TAHATA

Summary

Today, ornamental crops are inclined to be selected and consumed, compared with cereals and vegetables and fruits by the consumers' fancy. The productions of ornamentals with high quality and high commercial values, are expected.

Therefore, as for the beginning, the characteristic factors that are influenced to commercial values, need to secure.

Here, for high quality production of Bouvardias which is important crop in Tokyo area, the analysis of characteristic factors that were influenced to commercial values and high qualities were done by the theory of Multivariate Techniques.

The results of factors’ analysis were as follows:

1. The quantitative factors that determined high quality and commercial values of cut flowers of Bouvardias, were “length of flower stem”, “thickness of flower stem”, “width of flower cluster”, “thickness of flower cluster” and “width of flower petal”, etc.

2. The qualitative factors that determined high quality and commercial values of cut flowers of Bouvardias, were “straight flower stem”, “well-balance of cut flower”, “strength of flower stem” and “big portion as cut flower”, etc.

Therefore, if these analyzed factors of the characteristics in cut flowers of Bouvardias were noticed, the high quality production that is coincided with today’s consumer's fancy of it, will be able to produce.

I 緒 言

花き園芸が対象する花き類は、穀物や野菜や果樹に比べると消費者の嗜好によって選択購入され消費される要素が強い。したがって、かつつの方向が不満であった時代ならまだしも、現代では生産量も増大しており、同じ物であっても好みに合った物が選択して購入される。すなわち、高い商品性を持った高品質の花き類のみが流通過程での対象となり得る。そして、花き園芸に従事する技術者・研究者の研究対象も、消費者の嗜好をいかつかみ、いかに嗜好にあった商品を生産する技術開発をするかという研究課題が多くなっている。特に、ここ数年の農林水産省および都道府県の研究機関が主催する研究集会などでは花き類の高品質生産に向けてのテーマが多い。しかし、その中での議論を見る限りでは品質の把握、定義付けについては客観性に乏しい。そこで筆者は銘花のエラトオール・ベゴニア、および花のガーベラ等について品質
要因の把握を試みました。

ここでは、東京都豊川郡特産のプサルディアの切花について、品質評価の要因の解析を行った。特に、豊川郡におけるプサルディアの切花生産は全国のほぼ50%のシェアを持つ重要な切花であるとともに、市場の大型化が間近に迫っている中で、流通の合理化、スピードアップのための品質・規格の統一が急務となっている。

筆者らは、高い商品性を持った高品質切花を生産する栽培技術改善のための基盤的資料を得るため、切花の形質を数値として計測可能な量的形質と感覚的かつ相対的な質的形質に分類し、品質評価に影響する形質要因の解析を試みた。

II 材料および実験方法

1. 供試品種

本実験に供した品種は昭和62年4月23日にオランダのプサルディア専門の苗生産者ジョン・ドゥ・ヤング商会（John de Jong B. V.）から提供を受けたハイブリダ系（Bouvardia hybrida hort. cv.）の無病苗（ドルフレー苗、オランダ政府輸出検疫済）ジョレダ・ジョワイNTOWHITE、ジョロア・JOWHITE、ジョロア・JOROSA、ジョリタ・JOLITA、イロンカ・ILONKA（以上一重咲）、ダブルライトピンク・DOUBLE LIGHT PINK、ダブルホワイト・DOUBLE WHITE、ロクサーヌ・ROXANNE（以上八重咲）の8品種を利用した。

2. 試験調査区

品種毎に床幅100cm、長さ300cmを1区として1品種当り90株を供試した。

3. 耕種概要

昭和62年5月1日、豊川郡試験所内のビニールハウス内を定植床に柱間15cm、柱間15cmの6条植え（2条定植1条あけ）で72株定植した。

昭和62年5月19日にさせ植定後9月10日に株当たり2芽残して整枝し、自然日長下で開花させた。さらに、12月28日に再度切り落しを行ない、照査して、8−9節まで栄養生長を促進させて後に自然開花させた。

施肥は元肥として、ヘッソササヒ（株）製造のコーティング肥料（14−12−14）を10a当たり200kgと過磷酸石灰（0−16−0）100kgを施した。スタータおよび追肥として「くみあい液肥2号」（10−4−8）を10日毎に500倍液で与えた。

冬季の最低気温は12℃とした。

定植床の土壌消毒はクロールピクリンで行ない、生育中の病害虫の防除は慣行法にしたかった。

4. 調査方法

昭和62年11月20日から12月28日まで順次採花した切花を個別に5段階評価した後に、量的形質を26項目に分類して計測し、さらに質的形質を11項目（アイテム）に分けて調査した。

母集団を広くすることにより、品質評価に客観性を持たせるために、複数の者に目通しを行ない、1品種当りの調査個体数は100個体とした。

5. 調査項目

調査項目については種苗法のプサルディア特性分類調査表を参考として決定した。

量的形質：（説明変数）X1 全切花径（cm）、X2 花柄長（cm）、X3 花柄中央部の太さ（mm）、X4 切花の総数、X5 花柄中央部の節間長（mm）、X6 花房の大きさ（長径）（mm）、X7 小花の大きさ（短径）（mm）、X10 花房数、X11 花房の厚さ（上位3節）（cm）、X12 総花数、X13 花蕾帯、X14 開花数、X15 花弁の長さ（mm）、X16 花弁の幅（mm）、X17 花弁の長さ（mm）、X18 花柄上部の太さ（mm）、X19 花弁基部の太さ（mm）、X20 花弁数、X21 花弁の厚さ（mm）、X22 花节数（cm）、X23 花弁幅（cm）、X24 花数、X25 一節からの出花数、X26 花の厚さ（mm）

質的形質：（説明変数）X1 切花のしまり具合（1：悪い、2：普通、3：良い）、X2 花の着色程度（1：悪い、2：普通、3：良い）、X3 奇形花の程度（1：少ない、2：ややある、3：目立つ）、X4 花の香りの程度（1：ない、2：ややある、3：強）、X5 開花の様子（1：悪い、2：普通、3：良い）、X6 植葉色の程度（1：うすい、2：普通、3：濃い）、X7 葉の形状の程度（1：認められない、2：やや認められる、3：認められる）、X8 花柄の強さ（1：弱い、2：普通、3：強い）、X9 花柄の曲がりの程度（1：まっすぐ、2：普通、3：目立つ）、X10 切花全体のバランス（1：悪い、2：普通、3：良い）、X11 切
花全体のポリューム（1：少ない，2：普通，3：多い）
品質評価（5段階評価）：（目的変数）Y（1：劣る，
2：やや劣る，3：つう，4：良い，5：極めて良い）
6. 解析方法
品種のおよび品性（habit）の類似した花型（一重咲と
重咲）毎に分けて品質に及ぼす要因を把握するために
以下の解析方法（10）（11）（12）（13）を利用した。
品質評価に及ぼす量的形質要因の解析には、重回帰分
析法（ステップワイズ法）を利用し、品質評価を目的変
数（Y）として、計算した量的形質を説明変数（X）と
した。
また、品質評価に及ぼす形質要因の解析には、数
量理論1類を利用した。量的形質要因の解析同様、品質
評価を目的変数（Y）として、計算した量的形質を説明
変数（X）とした。
II 実験結果
1. 供試品種の特性
供試した品種の形態的特性はTable 1に示すとおりで
ある。ジョレダ JOREDA とイロンカ ILONKA の草性
は、近で、到花日数、軽い短かく、早生型の特徴を示し
た。これに対しショーレオ JOROSA、ショウホウ
JOWHITE、ショレ JOLITA は花の大きさと草丈も
やや大きく、到花日数もやや多くかかる中生型の特徴を
示した。重咲品種のダブルライトピンク DOUBLE
LIGHT PINK、ダブルホワイト DOUBLE WHITE、
ロクサース ROXANNE は草丈が長く、到花日数もさら
にかかる中生型の特性を示した。
2. 品種別の量的品質要因の解析
1）品種ショレダ JOREDA では「花柄中央部の太さ（X
3）」が花の品質に影響する要因として最も大きく、
重相関係数および決定係数（寄与率）はそれぞれ0.895、
57.6%であった。次いで「花房の厚さ（X21）」、「全
け花長（X1）」、「開花数（X14）」の順で正（+）
の要因として影響していることが明らかになった（Table
2）。
2）品種ショーレオ JOROSA では「全け花長（X1）」
が品質に影響している要因として最も大きく、重相関
係数および決定係数はそれぞれ0.671, 45.0%であった。
次いで、「花房の大きさ（X6）」、「花柄基部の太さ
（X19）」、「花房の厚さ（X21）」、「総花数（X
12）」の順で正（+）の要因として影響している事が明
らかになった。しかし、「花柄の長さ（X2）」と「花
房数（X10）」は負（−）の要因として影響していた
（Table 3）。
3）品種ショレ JOLITA では「全け花長（X1）」
が品質に影響している要因として最も大きく、重相関
係数および決定係数はそれぞれ0.850, 72.3%であった。
次いで、「花房の大きさ（X6）」、「花柄基部の太さ
（X3）」、「花房の幅（X16）」の順で正（+）
の要因として影響している事が明らかになった。しかし、
「花柄の長さ（X2）」は負（−）の要因として影響し
ていた（Table 4）。
4）品種ショウホウ JOWHITE では「全け花長（X1）」
が品質に影響している要因として最も大きく、重相関
係数および決定係数はそれぞれ0.806, 64.9%であった。
次いで、「花房の大きさ（X7）」、「一節からの出葉
数（X25）」、「花弁の幅（X16）」の順で正（+）
の要因として影響している事が明らかになった。しかし、ショ
ホウ JOWHITE の場合、生育が旺盛なため、「花
柄の長さ（X2）」は負（−）の要因として認められた
（Table 5）。
5）品種イロンカ ILONKA ではショレダ JOREDA と
同様に「花柄中央部の太さ（X3）」が切花の品質に影
響する要因として最も大きく、重相関係数および決定係数
はそれぞれ0.663, 44.0%であった。次いで「開花数（X
14）」、「花房の幅（X16）」、「花房の大きさ（X7）
」、「切花の総数（X4）」の順で正（+）の要因として
影響していることが明らかになった（Table 6）。
6）品種ダブルライトピンク DOUBLE LIGHT PINK
では「全け花長（X1）」が切花の品質に影響する要因
として最も大きく、重相関係数および決定係数はそれぞ
れ0.846, 71.6%であった。次いで「花房の大きさ（X
7）」、「花柄基部の太さ（X23）」、「花房の大きさ（X8）
」の順で正（+）の要因として影響していることが明
らかになった（Table 7）。
7）品種ダブルホワイト DOUBLE WHITE では「全
け花長（X1）」が切花の品質に影響する要因として最
も大きく、重相関係数および決定係数はそれぞれ0.719、
51.8%であった。次いで「花房の大きさ（X6）」、「開
花数（X14）」、「花柄基部の太さ（X19）」、「花房の
数（X24）」の順で正（+）の要因として影響して
-41-
いることが明らかになった。しかし、「切花の総数（X4）」、「一節からの出数（X25）」は品質に負（-）の要因として影響していることが明らかになった（Table 8）。

8）品種ロクサナ ROXANNE では「花柄中央部の太さ（X3）」が切花の品質に影響する要因として最も大きく、重相関係数および決定係数はそれぞれ0.878, 77.1％であった。次いで「全切花長（X1）」、開花数（X14）、「花筒の長さ（X17）」、 「花筒上部の太さ（X18）」の順で正（+）の要因として影響していることが明らかになった。しかし、生育が旺盛で、葉や花が全体として大型化しているため、「葉身長（X22）」、「小花の大きさ（X8）」は負（-）の要因として影響していた（Table 9）。

3. 品種別の質的品質要因の解析
1）品種ショウサイ JOREDA ではアイテム（大項目）の「花柄の長さ（X8）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.461であった。次いで「切花のボリューム（X11）」、「切花のしまり（X1）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.808と高く、「花柄が強く」「切花にボリュームがあり」「しまりがよい」ものがカテゴリー-エウエットも高く、品質が良いことが明らかになった（Table 12）。

2）品種ショロゼ JOROSA ではアイテム（大項目）の「切花のボリューム（X11）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.635であった。次いで「花柄の曲がり（X9）」、「花柄の長さ（X8）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.879と高く、「切花にボリュームがあり」「花柄がまっすぐで」「花柄が強力」ものがカテゴリー-エウエットも高く、品質が良いことが明らかになった（Table 12）。

3）品種ショリア JOLITA ではアイテム（大項目）の「切花のボリューム（X11）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.478であった。次いで「花柄の曲がり（X9）」、「切花のバランス（X10）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.896と高く、「切花にボリュームがあり」「花柄がまっすぐで」「切花のバランスがよい」ものがカテゴリー-エウエットも高く、品質が良いことが明らかになった（Table 12）。

4）品種ショウサイ JOWHITE ではアイテム（大項目）の「花柄の曲がり（X9）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.573であった。次いで「花柄の長さ（X8）」、「切花のバランス（X10）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.899と高く、「花柄がまっすぐで」「花柄が強く」「切花のバランスがよい」ものがカテゴリー-エウエットも高く、品質が良いことが明らかになった（Table 12）。

5）品種イロッカ ILONKA ではアイテム（大項目）の「花柄の曲がり（X9）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.490であった。次いで「切花のボリューム（X11）」、「花柄の長さ（X8）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.723と高く、「花柄がまっすぐで」「切花にボリュームがあり」「花柄が強力」ものがカテゴリー-エウエットも高く、品質が良いことが明らかになった（Table 13）。

6）品種ダブルライトピンク DOUBLE LIGHT PINK ではアイテム（大項目）の「花柄の長さ（X8）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.519であった。次いで「切花のバランス（X10）」、「花柄の曲がり（X9）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.862と高く、「花柄が強く」「切花がバランスよく」「花柄がまっすぐで」「切花にボリュームがある」ものがカテゴリー-エウエットも高く、品質が良いことが明らかになった（Table 13）。

7）品種ダブルホワイト DOUBLE WHITE ではアイテム（大項目）の「花柄の曲がり（X9）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.384であった。次いで「切花のボリューム（X11）」、「切花のバランス（X10）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.741と高く、「花柄がまっすぐで」「切花にボリュームがあり」「切花のバランスよく」ものがカテゴリー-エウエットも高く、品質が良いことが明らかになった（Table 13）。

8）品種ロクサナ ROXANNE ではアイテム（大項目）の「花柄の曲がり（X9）」が切花の品質に影響する要因として最も大きく、偏相関係数は0.635であった。次いで「花柄の長さ（X8）」、「切花のボリューム（X11）」の順で偏相関係数が大きかった。カテゴリー（細項目）の重相関係数は0.915と高く、「花柄がまっすぐで」,
「花柄が強く」、「切花にボリュームがある」ものがカテゴリー一に高く、品質が良いことが明らかになった（Table. 13）。

4. 一重咲品種の品質要因の解析

1）一重咲き5品種全体では、質的形質のうち品質と強く影響するものとして、大きいものから「切花長（X1）」、「花柄の太さ（X3）」、「一つ節の出葉数（X25）」、「花弁の幅（X9）」、「花房の厚さ（X11）」の順に正（+）の要因としてあげられたが、「花房数（X10）」は負（-）の要因としてあげられた（Table. 10）。

2）同様に一重咲き5品種全体の質的形質が品質に及ぼす要因としては、「花柄の曲がりの程度（X9）」、「全体のバランス（X10）」、「花柄の太さ（X3）」」のアイテム（大項目）の順で影響しており、カテゴリー（細項目）では、「花柄の曲がりの程度（X9-1）」ほど、「全体のバランスが良い（X10-1）」ほど、品質に良い影響を及ぼしていた（Table. 14）。

5. 八重咲品種の品質要因の解析

1）八重咲き3品種全体では、量的形質のうち品質に強く影響するものとして、大きいものから「切花長（X1）」、「花柄の太さ（X3）」、「花房の大きさ（X7）」、「花の厚さ（X26）」、「花弁の幅（X15）」、「花筒の長さ（X17）」、「花房の厚さ（X11）」、「花弁数（X20）」の順に正（+）の要因としてあげられたが、「切花の節数（X4）」、「花弁の厚さ（X21）」は寄与率は少ないものの負（-）の要因としてあげられた（Table. 11）。

2）同様に、八重咲き3品種全体では質的形質が品質に及ぼす要因として、「花柄の曲がりの程度（X9）」、「花柄の太さ（X3）」、「全体のバランス（X10）」、「全体のボリューム（X11）」の各アイテムが強く影響しており、カテゴリーとしては、「花柄の曲がりが少ない（X9-1）」ほど、「花柄が強い（X8-3）」ほど、「ボリュームがある（X11-3）」および「バランスが良い（X10-3）」ほど品質に良い影響を及ぼしていることが明らかになった（Table. 14）。

IV 考察

本試験の解析結果から、品質に強く影響する量的形質には「切花長」、「花柄の太さ」、「花房の大きさ」、「花弁の幅」、「花房の厚さ」などがあげられた。また、質的形質では、「花柄の曲がりが少なく」、「花柄が強く」、しかも「全体のバランスが良く」、「ボリュームのあるもの」が高い品質評価を受けていることが明らかになった。

したがって、栽培技術で解決できる項目についてはそれらの点に留意しながら栽培技術の改善に努めなければならない。

V 摘要

花柄の形態が対象とする花を品種の観点から栽培技術の改善を行なうとき、品質の良い花を育てることができる。そこで、高い商品性を持つ花を育てるためには、品質の良い花を育てることが重要である。

ここでは、東京都における主要栽培であるブパルディア生産の高品質に向けて、その品質に影響する形質要因の解析を多変数解析法を利用して分析してみた。

多変数解析法による解析結果は以下のとおりである。

1. ブパルディアの花の品種を決定する量的形質要因は「切花長」、「花柄の太さ」、「花房の大きさ」、「花房の厚さ」、「花弁の幅」等があげられた。

2. ブパルディアの花の品種を決定する質的形質要因としては「花柄の曲がりが少ない」、「花房全体のバランスが良い」、「花柄が強い」、「花房全体のボリューム感がある」等があげられた。

これら切花の量的・質的形質に留意しながら栽培技術の改良を行うならば、今日の消費動向に合った高い品質の切花生産が可能となる。

VI 引用文献

1. 小林隆 高冷地切花の高品質生産技術開発関東東海地域「花の品質生産技術開発に関する研究会」資料 総合研究センター編（昭和61年7月）：1－7

2. 堀川昭男 施設切花の品種向上技術関東東海地域「花の高品質生産技術開発に関する研究会」資料 総合研究センター編（昭和61年7月）：9－22

3. 住井正康 鉢花の品質向上技術関東東海地域「花の高品質生産技術開発に関する研究会」資料 総合研究センター編（昭和61年7月）：23－26

- 43 -
4. 富田康 新導入花の品質向上技術関東東海地域
「花の高品質生産技術開発に関する研究会」資料
農業研究センター編（昭和61年7月）：27－33
5. 潮沢昌道 生産および消費の動向について関東東
海地域「切花便を中心とする特産花水の開発に関する
研究会」資料農業研究センター編（昭和60年6月）
： 1－4
6. 浜田豊 エラチオール・ベゴニアに関する研究（第
3報）母株の日長管理が増殖株の品質に及ぼす影響
昭和58年園芸学会春季大会研究発表委員会：316－317
7. 浜田豊 ガーベラ Gerbera jamesonii hybrid hort.
に関する研究（第2報）切花用品種と品質要因の解析
昭和59年園芸学会春季大会研究発表委員会：334－335
8. 浜田豊 ガーベラ Gerbera jamesonii hybrid hort.
に関する研究（第3報）冬季におけるソイルヒーティ
ングが植株の生育および切花の品質・品質に及ぼす影
響 昭和59年園芸学会秋季大会研究発表委員会：322－
323
9. 浜田豊 パルディア導入品種の特性と品質要因の
解析関東東海地域「花の新規有望素材開発に関する
研究会」資料農業研究センター編（昭和63年7月）
：19－28
10. 岸根卓郎 統計学養賢堂1977
11. 奥野忠一 久米均 ほか 多変量解析法 日科技連
1971
12. 奥野忠一 芳賀敬郎 ほか 統 多変量解析法 日
科技連 1976
13. 多変量解析 日本マイコン学院1986
Table 1 Morphological characteristics of cut bouvardia's cultivars.

<table>
<thead>
<tr>
<th>Characteristics/varieties</th>
<th>Joreda</th>
<th>Jorosa</th>
<th>Jowhite</th>
<th>Jolita</th>
<th>Ilonka</th>
<th>Double Light Pink</th>
<th>Double White</th>
<th>Roxanne</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flower type</td>
<td>single</td>
<td>single</td>
<td>single</td>
<td>single</td>
<td>single</td>
<td>single salmon pink</td>
<td>single salmon pink</td>
<td>single salmon pink</td>
</tr>
<tr>
<td>Flower colour (R.H.S. Color char No.)</td>
<td>red</td>
<td>rose</td>
<td>white</td>
<td>pink</td>
<td>salmon pink</td>
<td>38B (35D)</td>
<td>56A</td>
<td>56D</td>
</tr>
<tr>
<td>Cut flower length (cm)</td>
<td>77.5</td>
<td>81.8</td>
<td>87.8</td>
<td>81.3</td>
<td>68.5</td>
<td>78.1</td>
<td>82.9</td>
<td>74.7</td>
</tr>
<tr>
<td>Stem length (cm)</td>
<td>72.0</td>
<td>73.3</td>
<td>82.9</td>
<td>77.0</td>
<td>63.3</td>
<td>74.1</td>
<td>79.2</td>
<td>70.9</td>
</tr>
<tr>
<td>Thickness of flower stem (mm)</td>
<td>3.3</td>
<td>3.3</td>
<td>3.4</td>
<td>3.3</td>
<td>3.1</td>
<td>3.5</td>
<td>3.6</td>
<td>3.4</td>
</tr>
<tr>
<td>Total no. of stem node</td>
<td>11.8</td>
<td>13.4</td>
<td>13.9</td>
<td>14.3</td>
<td>11.3</td>
<td>12.4</td>
<td>13.6</td>
<td>12.5</td>
</tr>
<tr>
<td>Length of internode (mm)</td>
<td>69.7</td>
<td>63.5</td>
<td>72.4</td>
<td>63.7</td>
<td>64.1</td>
<td>67.7</td>
<td>63.9</td>
<td>65.0</td>
</tr>
<tr>
<td>Long width of flower cluster (A)</td>
<td>14.7</td>
<td>10.2</td>
<td>9.0</td>
<td>9.0</td>
<td>12.1</td>
<td>8.0</td>
<td>8.7</td>
<td>7.7</td>
</tr>
<tr>
<td>Short width of flower cluster (B)</td>
<td>10.3</td>
<td>8.5</td>
<td>7.8</td>
<td>7.6</td>
<td>9.0</td>
<td>6.3</td>
<td>7.0</td>
<td>6.5</td>
</tr>
<tr>
<td>Long width of flowerlet (A)</td>
<td>27.4</td>
<td>25.6</td>
<td>23.6</td>
<td>24.9</td>
<td>25.5</td>
<td>21.8</td>
<td>23.2</td>
<td>21.7</td>
</tr>
<tr>
<td>Short width of flowerlet (B)</td>
<td>27.3</td>
<td>25.5</td>
<td>23.5</td>
<td>24.8</td>
<td>25.4</td>
<td>21.5</td>
<td>23.2</td>
<td>21.6</td>
</tr>
<tr>
<td>No. of flower cluster</td>
<td>11.6</td>
<td>9.9</td>
<td>9.0</td>
<td>9.2</td>
<td>9.9</td>
<td>7.6</td>
<td>9.3</td>
<td>8.3</td>
</tr>
<tr>
<td>Thickness of flower cluster (cm)</td>
<td>10.2</td>
<td>9.2</td>
<td>8.0</td>
<td>7.6</td>
<td>8.9</td>
<td>8.5</td>
<td>8.0</td>
<td>7.2</td>
</tr>
<tr>
<td>Total no. of flowers and buds</td>
<td>35.7</td>
<td>32.7</td>
<td>28.7</td>
<td>28.3</td>
<td>29.3</td>
<td>21.2</td>
<td>26.2</td>
<td>24.6</td>
</tr>
<tr>
<td>No. of flower buds</td>
<td>15.4</td>
<td>22.2</td>
<td>19.9</td>
<td>17.9</td>
<td>13.0</td>
<td>11.8</td>
<td>16.0</td>
<td>17.5</td>
</tr>
<tr>
<td>No. of flowering flowers</td>
<td>20.4</td>
<td>10.5</td>
<td>8.8</td>
<td>10.6</td>
<td>16.3</td>
<td>9.5</td>
<td>10.2</td>
<td>7.1</td>
</tr>
<tr>
<td>Length of flower petal (mm)</td>
<td>12.0</td>
<td>12.2</td>
<td>11.0</td>
<td>11.1</td>
<td>11.2</td>
<td>9.1</td>
<td>9.7</td>
<td>9.1</td>
</tr>
<tr>
<td>Width of flower petal (mm)</td>
<td>6.0</td>
<td>6.4</td>
<td>5.5</td>
<td>6.2</td>
<td>6.5</td>
<td>5.7</td>
<td>5.9</td>
<td>5.4</td>
</tr>
<tr>
<td>Length of flower tube (mm)</td>
<td>29.3</td>
<td>27.0</td>
<td>27.5</td>
<td>27.3</td>
<td>28.5</td>
<td>17.8</td>
<td>18.9</td>
<td>18.8</td>
</tr>
<tr>
<td>Thickness of upper part of flower tube (mm)</td>
<td>3.6</td>
<td>3.7</td>
<td>3.1</td>
<td>3.5</td>
<td>3.6</td>
<td>3.6</td>
<td>3.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Tickness of lower part of flower tube (mm)</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
<td>1.9</td>
<td>2.0</td>
<td>2.5</td>
<td>2.5</td>
<td>2.2</td>
</tr>
<tr>
<td>No. of flower petals</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>4.0</td>
<td>11.5</td>
<td>10.6</td>
<td>10.2</td>
</tr>
<tr>
<td>Thickness of flower petal (mm)</td>
<td>0.40</td>
<td>0.40</td>
<td>0.45</td>
<td>0.40</td>
<td>0.47</td>
<td>0.44</td>
<td>0.47</td>
<td>0.38</td>
</tr>
<tr>
<td>Length of leaf (cm)</td>
<td>12.2</td>
<td>12.1</td>
<td>11.7</td>
<td>12.3</td>
<td>11.8</td>
<td>12.8</td>
<td>13.3</td>
<td>13.3</td>
</tr>
<tr>
<td>Width of leaf (cm)</td>
<td>5.1</td>
<td>5.4</td>
<td>5.5</td>
<td>5.7</td>
<td>4.9</td>
<td>5.8</td>
<td>5.9</td>
<td>6.3</td>
</tr>
<tr>
<td>No. of leaves per flower stem</td>
<td>25.0</td>
<td>28.0</td>
<td>37.8</td>
<td>29.8</td>
<td>24.3</td>
<td>26.3</td>
<td>29.7</td>
<td>26.7</td>
</tr>
<tr>
<td>No. of leaves per stem node</td>
<td>2.1</td>
<td>2.1</td>
<td>2.7</td>
<td>2.1</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
<td>2.2</td>
</tr>
<tr>
<td>Thickness of leaf (mm)</td>
<td>0.3</td>
<td>0.3</td>
<td>0.23</td>
<td>0.21</td>
<td>0.28</td>
<td>0.27</td>
<td>0.27</td>
<td>0.26</td>
</tr>
</tbody>
</table>

Flowering day's after final pinching
(1) autumn season
92.1 98.5 102.4 100.1 93.6 100.9 103.2 105.3
(2) winter season
131.0 133.7 137.5 143.7 128.4 146.0 144.3 163.9

note 1: each figure is average of 100 pieces of cut flowers.

note 2: each final pinching is August 15th and December 20th.
Table 2: Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
<th>6th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of center part of flower stem</td>
<td>X 3</td>
<td>0.762</td>
<td>0.730</td>
<td>0.537</td>
<td>0.514</td>
<td>0.407</td>
<td>0.422</td>
</tr>
<tr>
<td>Thickness of flower petal</td>
<td>X 21</td>
<td>0.226</td>
<td>0.220</td>
<td>0.196</td>
<td>0.211</td>
<td>0.200</td>
<td></td>
</tr>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.245</td>
<td>0.222</td>
<td>0.239</td>
<td>0.217</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of flowering flowers</td>
<td>X 14</td>
<td></td>
<td>0.145</td>
<td>0.127</td>
<td>0.129</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of leaf</td>
<td>X 26</td>
<td></td>
<td></td>
<td>0.149</td>
<td>0.199</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of upper part of flower tube</td>
<td>X 18</td>
<td></td>
<td></td>
<td></td>
<td>0.101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>135.639</td>
<td>82.765</td>
<td>60.267</td>
<td>48.518</td>
<td>40.665</td>
<td>34.695</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.759</td>
<td>0.789</td>
<td>0.801</td>
<td>0.811</td>
<td>0.817</td>
<td>0.819</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>57.6</td>
<td>62.3</td>
<td>64.2</td>
<td>65.8</td>
<td>66.7</td>
<td>67.1</td>
</tr>
</tbody>
</table>

note 1: cv. “Joreda”

note 2: analyzed by the method of Multiple Regression Analysis

note 3: \[R^* = 1 - \frac{V_F}{V_T} = 1 - \frac{S_0}{(n-p-1)/S_{TP}/(n-1)} = 1 - \frac{(n-1)}{(n-p-1)} \frac{(1-R^2)}{p/(n-p-1)} \]

note 4: calculated by PC 9801VM computer system and Software “Multivariate Techniques”

Table 3: Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
<th>6th step</th>
<th>7th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.675</td>
<td>0.528</td>
<td>0.455</td>
<td>0.471</td>
<td>0.408</td>
<td>1.521</td>
<td>1.838</td>
</tr>
<tr>
<td>Long width of flower cluster</td>
<td>X 6</td>
<td>0.327</td>
<td>0.272</td>
<td>0.274</td>
<td>0.186</td>
<td>0.176</td>
<td>0.166</td>
<td></td>
</tr>
<tr>
<td>Thickness of lower part of flower tube</td>
<td>X 19</td>
<td></td>
<td>0.192</td>
<td>0.170</td>
<td>0.184</td>
<td>0.202</td>
<td>0.204</td>
<td></td>
</tr>
<tr>
<td>Thickness of flower petal</td>
<td>X 21</td>
<td></td>
<td></td>
<td>0.136</td>
<td>0.140</td>
<td>0.121</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of flowers and buds</td>
<td>X 12</td>
<td></td>
<td></td>
<td>0.163</td>
<td>0.176</td>
<td>0.256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stem length</td>
<td>X 2</td>
<td></td>
<td></td>
<td></td>
<td>-1.129</td>
<td>-1.440</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of flower clusters</td>
<td>X 10</td>
<td></td>
<td></td>
<td></td>
<td>-0.128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>81.913</td>
<td>57.010</td>
<td>41.590</td>
<td>33.115</td>
<td>27.483</td>
<td>23.537</td>
<td>20.717</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.671</td>
<td>0.729</td>
<td>0.743</td>
<td>0.752</td>
<td>0.752</td>
<td>0.760</td>
<td>0.763</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>45.0</td>
<td>53.1</td>
<td>55.2</td>
<td>55.2</td>
<td>57.2</td>
<td>57.7</td>
<td>58.2</td>
</tr>
</tbody>
</table>

note 1: cv. “Jorosa”

note 2: analyzed by the method of Multiple Regression Analysis

note 3: \[R^* = 1 - \frac{V_F}{V_T} = 1 - \frac{S_0}{(n-p-2)/S_{TP}/(n-1)} = 1 - \frac{(n-1)}{(n-p-2)} \frac{(1-R^2)}{p/(n-p-1)} \]

note 4: calculated by NEC PC 9801VM computer system and Software “Multivariate Techniques”
Table 4 Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.852</td>
<td>0.641</td>
<td>0.396</td>
<td>0.375</td>
<td>1.503</td>
</tr>
<tr>
<td>Long width of flower cluster</td>
<td>X 6</td>
<td>0.313</td>
<td></td>
<td>0.304</td>
<td>0.352</td>
<td>0.230</td>
</tr>
<tr>
<td>Thickness of center part of flower stem</td>
<td>X 3</td>
<td></td>
<td>0.274</td>
<td></td>
<td>0.237</td>
<td>0.286</td>
</tr>
<tr>
<td>Width of flower petal</td>
<td>X 16</td>
<td></td>
<td></td>
<td>0.125</td>
<td></td>
<td>0.120</td>
</tr>
<tr>
<td>Stem length</td>
<td>X 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-1.126</td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>251.888</td>
<td>166.067</td>
<td>177.497</td>
<td>93.265</td>
<td>78.293</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.850</td>
<td>0.880</td>
<td>0.886</td>
<td>0.891</td>
<td>0.895</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>72.3</td>
<td>77.5</td>
<td>78.5</td>
<td>79.4</td>
<td>81.1</td>
</tr>
</tbody>
</table>

Note. 1: cv. “Jolita”
Note. 2: analyzed by the method of Multiple Regression Analysis
Note. 3: $R^* = 1 - \frac{V}{V_T} = 1 - \frac{S_{yp}}{S_{yp}} = 1 - (n-1)(1 - R^2)(n-p-1)$
Note. 4: calculated by NEC PC-9801VM computer system and Software “Multivariate Techniques”

Table 5 Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
<th>6th step</th>
<th>7th step</th>
<th>8th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.808</td>
<td>0.648</td>
<td>1.866</td>
<td>1.868</td>
<td>1.904</td>
<td>1.702</td>
<td>1.628</td>
<td>1.482</td>
</tr>
<tr>
<td>Short width of flower cluster</td>
<td>X 7</td>
<td>0.032</td>
<td>0.289</td>
<td>0.273</td>
<td>0.224</td>
<td>0.144</td>
<td>0.128</td>
<td>0.128</td>
<td>0.128</td>
</tr>
<tr>
<td>Stem length</td>
<td>X 2</td>
<td>-1.218</td>
<td>0.1243</td>
<td>-1.277</td>
<td>-1.132</td>
<td>-0.975</td>
<td>-0.807</td>
<td>-0.807</td>
<td>-0.807</td>
</tr>
<tr>
<td>No. of leaves per stem node</td>
<td>X 25</td>
<td>0.125</td>
<td>0.157</td>
<td>0.169</td>
<td>0.339</td>
<td>0.416</td>
<td>0.416</td>
<td>0.416</td>
<td>0.416</td>
</tr>
<tr>
<td>Width of flower petal</td>
<td>X 16</td>
<td>0.130</td>
<td>0.128</td>
<td>0.110</td>
<td>0.082</td>
<td>0.082</td>
<td>0.082</td>
<td>0.082</td>
<td>0.082</td>
</tr>
<tr>
<td>Thickness of flower cluster</td>
<td>X 11</td>
<td>0.167</td>
<td>0.158</td>
<td>0.255</td>
<td>0.255</td>
<td>0.255</td>
<td>0.255</td>
<td>0.255</td>
<td>0.255</td>
</tr>
<tr>
<td>No. of leaves per flower stem</td>
<td>X 24</td>
<td>0.125</td>
<td>-0.223</td>
<td>-0.316</td>
<td>-0.316</td>
<td>-0.316</td>
<td>-0.316</td>
<td>-0.316</td>
<td>-0.316</td>
</tr>
<tr>
<td>No. of flower buds</td>
<td>X 13</td>
<td>0.125</td>
<td>-0.135</td>
<td>-0.135</td>
<td>-0.135</td>
<td>-0.135</td>
<td>-0.135</td>
<td>-0.135</td>
<td>-0.135</td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>184.118</td>
<td>123.627</td>
<td>87.980</td>
<td>70.411</td>
<td>53.247</td>
<td>53.510</td>
<td>47.668</td>
<td>43.111</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.806</td>
<td>0.844</td>
<td>0.851</td>
<td>0.859</td>
<td>0.866</td>
<td>0.872</td>
<td>0.876</td>
<td>0.890</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>64.9</td>
<td>71.2</td>
<td>72.5</td>
<td>73.7</td>
<td>75.0</td>
<td>76.1</td>
<td>76.7</td>
<td>77.3</td>
</tr>
</tbody>
</table>

Note. 1: cv. “Jowhite”
Note. 2: analyzed by the method of Multiple Regression Analysis
Note. 3: $R^* = 1 - \frac{V}{V_T} = 1 - \frac{S_{yp}}{S_{yp}} = 1 - (n-1)(1 - R^2)(n-p-1)$
Note. 4: calculated by NEC PC-9801VM computer system and Software “Multivariate Techniques”
Table 6 Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of center part of flower stem</td>
<td>X 3</td>
<td>0.668</td>
<td>0.498</td>
<td>0.527</td>
<td>0.431</td>
<td>0.501</td>
</tr>
<tr>
<td>No. of flowering flower</td>
<td>X 14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width of flower petal</td>
<td>X 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Short width of flower cluster</td>
<td>X 7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total no. of stem nodes</td>
<td>X 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>78.854</td>
<td>50.635</td>
<td>36.602</td>
<td>29.129</td>
<td>24.619</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.663</td>
<td>0.708</td>
<td>0.720</td>
<td>0.729</td>
<td>0.738</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>44.0</td>
<td>50.1</td>
<td>51.9</td>
<td>53.2</td>
<td>54.4</td>
</tr>
</tbody>
</table>

Note: 1: cv. “Ilona”
Note: 2: analyzed by the method of Multiple Regression Analysis
Note: 3: $R^*_2 = 1 - \frac{V_{E}}{V_{T}} = 1 - \frac{S_{G}(X-p-1)/S_{xy}(X-n-1)}{(X-1)(1-R^2)/(n-p-1) = ((n-1)(R^2)^2)/(n-p-1)}$
Note: 4: calculated by NEC PC-9801VM computer system and Software “Multivariate Techniques”

Table 7 Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.848</td>
<td>0.876</td>
<td>0.892</td>
<td>0.895</td>
</tr>
<tr>
<td>Short width of flower cluster</td>
<td>X 7</td>
<td></td>
<td>0.276</td>
<td>0.249</td>
<td>0.224</td>
</tr>
<tr>
<td>Width of leaf</td>
<td>X 23</td>
<td></td>
<td></td>
<td>0.208</td>
<td>0.196</td>
</tr>
<tr>
<td>Long width of floweret</td>
<td>X 8</td>
<td></td>
<td></td>
<td></td>
<td>0.106</td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>250.172</td>
<td>164.644</td>
<td>129.387</td>
<td>101.041</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.846</td>
<td>0.876</td>
<td>0.892</td>
<td>0.895</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>71.6</td>
<td>76.8</td>
<td>79.6</td>
<td>80.2</td>
</tr>
</tbody>
</table>

Note: 1: cv. “Double light pink”
Note: 2: analyzed by the method of Multiple Regression Analysis
Note: 3: $R^*_2 = 1 - \frac{V_{E}}{V_{T}} = 1 - \frac{S_{G}(X-p-1)/S_{xy}(X-n-1)}{(X-1)(1-R^2)/(n-p-1) = ((n-1)(R^2)^2)/(n-p-1)}$
Note: 4: calculated by NEC PC-9801VM computer system and Software “Multivariate Techniques”
Table 8 Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
<th>6th step</th>
<th>7th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.724</td>
<td>0.610</td>
<td>0.558</td>
<td>0.512</td>
<td>0.348</td>
<td>0.451</td>
<td>0.494</td>
</tr>
<tr>
<td>Long width of flower cluster</td>
<td>X 6</td>
<td>0.244</td>
<td></td>
<td>0.222</td>
<td>0.208</td>
<td>0.282</td>
<td>0.283</td>
<td>0.265</td>
</tr>
<tr>
<td>No. of flowering flower</td>
<td>X 14</td>
<td>0.179</td>
<td></td>
<td>0.179</td>
<td>0.209</td>
<td>0.195</td>
<td>0.184</td>
<td>0.189</td>
</tr>
<tr>
<td>Thickness of lower part of flower tube</td>
<td>X 19</td>
<td></td>
<td></td>
<td>0.153</td>
<td>0.236</td>
<td>0.241</td>
<td>0.218</td>
<td></td>
</tr>
<tr>
<td>No. of leaves per flower stem</td>
<td>X 24</td>
<td></td>
<td></td>
<td>0.225</td>
<td>0.233</td>
<td>0.233</td>
<td>1.119</td>
<td></td>
</tr>
<tr>
<td>Total no. of stem nodes</td>
<td>X 4</td>
<td></td>
<td></td>
<td></td>
<td>0.233</td>
<td></td>
<td>-0.135</td>
<td>-0.558</td>
</tr>
<tr>
<td>No. of leaves per stem node</td>
<td>X 25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.867</td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>88.979</td>
<td>53.085</td>
<td>39.166</td>
<td>31.641</td>
<td>27.965</td>
<td>24.323</td>
<td>22.761</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.719</td>
<td>0.748</td>
<td>0.763</td>
<td>0.774</td>
<td>0.789</td>
<td>0.794</td>
<td>0.806</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>51.8</td>
<td>56.0</td>
<td>58.3</td>
<td>59.9</td>
<td>62.2</td>
<td>63.1</td>
<td>65.0</td>
</tr>
</tbody>
</table>

Note:
1. cv. "Double White"
2. analyzed by the method of Multiple Regression Analysis
3. \[R^*² = 1 - \frac{V_F/V_T = 1 - S_p/(n-p-1)/S_y/(n-1) = 1 - (n-1) (1-R^2)/(n-p-1) = ((n-1)R^2-p)/(n-p-1) } \]
4. calculated by NEC PC 9801VM computer system and Software "Multivariate Techniques"

Table 9 Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
<th>6th step</th>
<th>7th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Thickness of center part of flower stem</td>
<td>X 3</td>
<td>0.879</td>
<td>0.418</td>
<td>0.379</td>
<td>0.481</td>
<td>0.521</td>
<td>0.536</td>
<td>0.510</td>
</tr>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.439</td>
<td>0.500</td>
<td>0.494</td>
<td>0.477</td>
<td>0.506</td>
<td>0.505</td>
<td></td>
</tr>
<tr>
<td>No. of flowering flower</td>
<td>X 14</td>
<td>0.126</td>
<td>-0.133</td>
<td>-0.175</td>
<td>-0.176</td>
<td>-0.176</td>
<td>-0.171</td>
<td></td>
</tr>
<tr>
<td>Length of leaf</td>
<td>X 22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of flower tube</td>
<td>X 17</td>
<td></td>
<td></td>
<td>0.094</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Long width of flowerlet</td>
<td>X 8</td>
<td></td>
<td></td>
<td></td>
<td>-0.080</td>
<td>-0.089</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of upper part of flower tube</td>
<td>X 18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>333.884</td>
<td>203.106</td>
<td>146.065</td>
<td>114.891</td>
<td>96.061</td>
<td>81.685</td>
<td>71.599</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.878</td>
<td>0.896</td>
<td>0.903</td>
<td>0.906</td>
<td>0.910</td>
<td>0.911</td>
<td>0.913</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>77.1</td>
<td>80.3</td>
<td>81.5</td>
<td>82.1</td>
<td>82.8</td>
<td>83.0</td>
<td>83.3</td>
</tr>
</tbody>
</table>

Note:
1. cv. "Double light pink"
2. analyzed by the method of Multiple Regression Analysis
3. \[R^*² = 1 - \frac{V_F/V_T = 1 - S_p/(n-p-1)/S_y/(n-1) = 1 - (n-1) (1-R^2)/(n-p-1) = ((n-1)R^2-p)/(n-p-1) } \]
4. calculated by NEC PC 9801VM computer system and Software "Multivariate Techniques"
Table 10: Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
<th>6th step</th>
<th>7th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.775</td>
<td>0.518</td>
<td>0.476</td>
<td>0.499</td>
<td>0.496</td>
<td>0.493</td>
<td>0.494</td>
</tr>
<tr>
<td>Thickness of center part of flower stem</td>
<td>X 3</td>
<td>0.314</td>
<td>0.324</td>
<td>0.296</td>
<td>0.259</td>
<td>0.282</td>
<td>0.266</td>
<td></td>
</tr>
<tr>
<td>No. of leaves per stem node</td>
<td>X 5</td>
<td></td>
<td></td>
<td>0.116</td>
<td>0.153</td>
<td>0.170</td>
<td>0.171</td>
<td>0.171</td>
</tr>
<tr>
<td>Width of flower petal</td>
<td>X 16</td>
<td></td>
<td></td>
<td></td>
<td>0.123</td>
<td>0.116</td>
<td>0.111</td>
<td>0.102</td>
</tr>
<tr>
<td>Thickness of flower cluster</td>
<td>X 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.083</td>
<td>0.131</td>
<td>0.124</td>
</tr>
<tr>
<td>No. of flower clusters</td>
<td>X 10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>-0.079</td>
<td>-0.077</td>
</tr>
<tr>
<td>Thickness of lower part of flower tube</td>
<td>X 19</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.046</td>
</tr>
<tr>
<td>Variance ratio</td>
<td></td>
<td>F</td>
<td>745.496</td>
<td>426.446</td>
<td>299.260</td>
<td>237.674</td>
<td>194.260</td>
<td>163.500</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td></td>
<td>R*</td>
<td>0.775</td>
<td>0.795</td>
<td>0.802</td>
<td>0.810</td>
<td>0.813</td>
<td>0.814</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td></td>
<td>R*²</td>
<td>60.0</td>
<td>63.2</td>
<td>64.3</td>
<td>65.6</td>
<td>66.1</td>
<td>66.3</td>
</tr>
</tbody>
</table>

Note: 1: 5 single flower's cultivars: Joreda, Jorosa, Jowhite, Jolita, Ilonka
Note: 2: analyzed by the method of Multiple Regression Analysis
Note: 3: \(R^2 = 1 - \frac{V_E}{V_T} = 1 - \frac{S_e^2/(n-p-1)}{S_T^2/(n-1)} = 1 - (n-1) (1-R^2)/(n-p-1) = ((n-1)R^2-p)/(n-p-1) \)
Note: 4: calculated by NEC PC 9801VM computer system and Software "Multivariate Techniques"
Table. 11 Factor analysis of quantitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th>Main analyzed quantitative characteristics</th>
<th>Variable</th>
<th>1st step</th>
<th>2nd step</th>
<th>3rd step</th>
<th>4th step</th>
<th>5th step</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.819</td>
<td>0.466</td>
<td>0.446</td>
<td>0.464</td>
<td>0.455</td>
</tr>
<tr>
<td>Thickness of center part of flower stem</td>
<td>X 3</td>
<td>0.406</td>
<td>0.336</td>
<td>0.336</td>
<td>0.300</td>
<td>0.288</td>
</tr>
<tr>
<td>Short width of flower cluster</td>
<td>X 7</td>
<td>0.138</td>
<td>0.130</td>
<td>0.130</td>
<td>0.075</td>
<td>0.081</td>
</tr>
<tr>
<td>Thickness of leaf</td>
<td>X 26</td>
<td></td>
<td></td>
<td></td>
<td>0.075</td>
<td>0.073</td>
</tr>
<tr>
<td>Width of flower petal</td>
<td>X 16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total no. of stem nodes</td>
<td>X 4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Length of flower tube</td>
<td>X 17</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of flower cluster</td>
<td>X 11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of flower petals</td>
<td>X 20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of flower petal</td>
<td>X 21</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>571.397</td>
<td>344.784</td>
<td>241.963</td>
<td>185.240</td>
<td>150.916</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.818</td>
<td>0.842</td>
<td>0.848</td>
<td>0.850</td>
<td>0.852</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>66.9</td>
<td>71.9</td>
<td>71.9</td>
<td>72.3</td>
<td>72.7</td>
</tr>
<tr>
<td>Main analyzed quantitative characteristics</td>
<td>Variable</td>
<td>6th step</td>
<td>7th step</td>
<td>8th step</td>
<td>9th step</td>
<td>10th step</td>
</tr>
<tr>
<td>Cut flower length</td>
<td>X 1</td>
<td>0.524</td>
<td>0.522</td>
<td>0.520</td>
<td>0.500</td>
<td>0.503</td>
</tr>
<tr>
<td>Thickness of center part of flower stem</td>
<td>X 3</td>
<td>0.268</td>
<td>0.276</td>
<td>0.283</td>
<td>0.267</td>
<td>0.262</td>
</tr>
<tr>
<td>Short width of flower cluster</td>
<td>X 7</td>
<td>0.119</td>
<td>0.113</td>
<td>0.091</td>
<td>0.088</td>
<td>0.083</td>
</tr>
<tr>
<td>Thickness of leaf</td>
<td>X 26</td>
<td>0.083</td>
<td>0.092</td>
<td>0.094</td>
<td>0.092</td>
<td>0.096</td>
</tr>
<tr>
<td>Width of flower petal</td>
<td>X 16</td>
<td>0.075</td>
<td>0.066</td>
<td>0.066</td>
<td>0.071</td>
<td>0.082</td>
</tr>
<tr>
<td>Total no. of stem nodes</td>
<td>X 4</td>
<td>-0.083</td>
<td>-0.095</td>
<td>-0.092</td>
<td>-0.069</td>
<td>-0.069</td>
</tr>
<tr>
<td>Length of flower tube</td>
<td>X 17</td>
<td>0.061</td>
<td>0.081</td>
<td>0.108</td>
<td>0.108</td>
<td>0.108</td>
</tr>
<tr>
<td>Thickness of flower cluster</td>
<td>X 11</td>
<td>0.065</td>
<td>0.071</td>
<td>0.071</td>
<td></td>
<td></td>
</tr>
<tr>
<td>No. of flower petals</td>
<td>X 20</td>
<td>0.070</td>
<td></td>
<td></td>
<td>0.074</td>
<td>0.074</td>
</tr>
<tr>
<td>Thickness of flower petal</td>
<td>X 21</td>
<td></td>
<td></td>
<td></td>
<td>-0.046</td>
<td></td>
</tr>
<tr>
<td>Variance ratio</td>
<td>F</td>
<td>127.650</td>
<td>110.954</td>
<td>98.553</td>
<td>88.864</td>
<td>80.518</td>
</tr>
<tr>
<td>Multiple correlation</td>
<td>R*</td>
<td>0.854</td>
<td>0.855</td>
<td>0.857</td>
<td>0.859</td>
<td>0.859</td>
</tr>
<tr>
<td>Coefficient of determination</td>
<td>R*²</td>
<td>72.9</td>
<td>73.2</td>
<td>73.5</td>
<td>73.7</td>
<td>73.8</td>
</tr>
</tbody>
</table>

note. 1: 3 double flower's cultivars: "Double light pink", "Double White", "Roxanne", 100 pieces each
note. 2: analyzed by the method of Multiple Regression Analysis
note. 3: \(R^{*2} = 1 - \frac{V_{E}}{V_{T}} = 1 - \frac{S_{G}/(n-p-1)/S_{W}*(n-1)}{1 - (1-R^{2})/(n-p-1)} = (n-1)(1-R^{2})/(n-p-1) \)
note. 4: calculated by NEC PC 9801VM computer system and Software "Multivariate Techniques"
Table 12 Factor analysis of qualitative characteristics to commercial quality on cut Bouvardias

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A constant (K)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X1. Harness of cut flower</td>
<td>0.414</td>
<td>2.08</td>
<td>2.09</td>
<td>2.313</td>
<td>2.08</td>
</tr>
<tr>
<td>1. soft</td>
<td>0.005</td>
<td>-0.024</td>
<td>0.147</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td>-0.179</td>
<td>-0.018</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. hard</td>
<td>0.375</td>
<td>0.078</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X2. Coloring of flower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. light</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. dark</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X3. Malformed flower</td>
<td>0.119</td>
<td></td>
<td></td>
<td></td>
<td>0.039</td>
</tr>
<tr>
<td>1. nothing</td>
<td>0.009</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. a few</td>
<td>-0.184</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. much</td>
<td>0.259</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X4. Smell of flower</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. few</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. much</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X5. Uniformity of flowering</td>
<td>0.143</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1. not good</td>
<td>-0.257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td>-0.054</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. good</td>
<td>0.018</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X6. Leaf color</td>
<td>0.321</td>
<td>0.171</td>
<td>0.056</td>
<td></td>
<td>0.192</td>
</tr>
<tr>
<td>1. light</td>
<td>-0.272</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td>0.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. dark</td>
<td>0.057</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X7. Malformed leaf</td>
<td></td>
<td>0.087</td>
<td>0.004</td>
<td></td>
<td>0.060</td>
</tr>
<tr>
<td>1. nothing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. a few</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. much</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X8. Strength of flower stem</td>
<td>0.461</td>
<td>0.373</td>
<td>0.296</td>
<td></td>
<td>0.446</td>
</tr>
<tr>
<td>1. weak</td>
<td>-0.260</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td>0.220</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. strong</td>
<td>0.257</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X9. Bend of flower stem</td>
<td>0.331</td>
<td>0.522</td>
<td>0.458</td>
<td></td>
<td>0.573</td>
</tr>
<tr>
<td>1. strength</td>
<td>0.088</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. lightly bending</td>
<td>0.210</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. bending</td>
<td>-0.279</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X10. Balance of cut flower</td>
<td>0.377</td>
<td>0.349</td>
<td>0.394</td>
<td></td>
<td>0.446</td>
</tr>
<tr>
<td>1. not good</td>
<td>-0.181</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td>0.044</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. well</td>
<td>0.539</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>X11. Portion of cut flower</td>
<td>0.439</td>
<td>0.635</td>
<td>0.478</td>
<td></td>
<td>0.283</td>
</tr>
<tr>
<td>1. small</td>
<td>-0.300</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. midium</td>
<td>0.019</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. big</td>
<td>0.474</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiple correlation (R*)</td>
<td>0.808</td>
<td>0.879</td>
<td>0.896</td>
<td></td>
<td>0.899</td>
</tr>
</tbody>
</table>

Note 1. cv. “Joreda”, “Jorosa”, “Jolita”, “Bonka”, 100 pieces each
Note 2. Analyzed by the theory of Quantification Analyst I method.
Note 3. calculated by NEC PC 9801VM computer system and Software “Multivariate Techniques”