活性汚泥法(二段酸化法)による沪液の浄化試験

小林 茂・奥山 肇・井上 正

1. 目 的

装置をできるだけ簡易化して、施工費を軽減し、水の使用量を少くする目的で、畜舎から洗 様水とともに排水されるふん尿汚水を、护布走行型脱水機により固液分離し、その沪液を二段 酸化法により処理する方法について試験を行った。

2. 試験方法

(1) 試料

豚ふんを $6\sim1$ 2 倍に希釈し、塩化第二鉄と、消石灰を加えて脱水し、その沪液を塩酸を加えてP . Hを調整したもので、その性状は表1 のとおりであった。

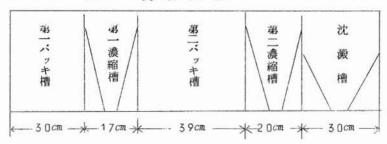

	範	囲	平	均
Р. Н	7.0	~ 8.8		7. 6
C.O.D	106~	400	2	0 8
B.O.D	350~	-1. 205	7	99
蒸発残留物	1,0000~	-5.560	4,4	2 5
浮 遊 物	20~	320		74

表1 汚水の性状

(2) 実験装置

実験装置は、図-1のとおりで材質は透明塩ビである。

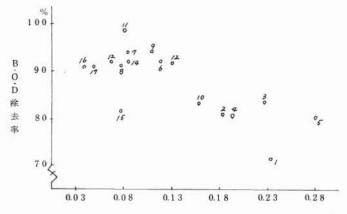
図-1 実験装置

各部の容積はつぎのとおりである。

第一	·/: -/:	キ槽	19.8 €	第二濃縮槽	5.8 ℓ	第一濃縮槽	4.5 ℓ
沈	澱	槽	1 0.4	第二バッキ槽	2 7.3	計	67.8€

(3) 設計諸元

設計諸元はつぎのとおりである。


- 1) 1日処理量60ℓ(B.O.D 1200ppm)
- 2) B.O.D容積負荷1.5 kg B.O.D活泥負荷0.3 kg
- 3) 第一バッキ槽MLSS6000ppm 第二バッキ槽4,000ppm 平均5,000ppm
- 4) 滞留時間 第一バッキ槽3時間 第一濃縮槽30分 第二バッキ槽4時間 第二濃縮槽 40分 沈澱槽2.5~3時間
- 5) 汚泥返送 第一濃縮槽 → 第一バッキ槽 50%第二濃縮槽 → 第一バッキ槽 100%
- 6) 送 風 量 流入汚水量(B.O.D 1,200ppm)×35または流入B.O.D1 kgに対して30 m²、第一バッキ槽:第二バッキ槽7:3

3. 試験成績

(1) 汚水の最適負荷条件

バッキ槽の水温が10 で以上の場合の処理実験の結果は表-1 のとおりで、B.O.D-S S 負荷 \ge B.O.D除去率 \ge の関係を図示する \ge 、 \ge のとおりであった。

図-2 B.O.D-SS負荷とB.O.D除去率(水温10℃以上)

B.O.D - S S 負荷 (W - B.O.D / W - S S · 日) 水温 10°C 以上

表-1 汚水の処理実験結果(水温10°C以上)

実験 番号	汚 水 C.O.D (ppm)	汚 水 B.O.D (ppm)	B.O.D -SS 負 荷	B.O.D 容積負荷	処理水 C.O.D	処理水 B.O.D	s. V%	s.v.1	B.O.D (%) 除去率
1	310	1.042	0.2 7 3	1,273	160	191	2 0,5	4 2	7 0.2
2	400	975	0.206	1.242	225	200	37.0	61	7 9.4
3	260	940	0.254	1.197	180	165	3 5.0	74	8 2.9
4	250	712	0.218	1.161	145	131	21.5	4 0	8 1. 6
5	270	1,170	0.284	1.490	250	232	21,0	4 0	8 0,1
6	235	762	0.118	0.9 7 2	125	65	61.0	7.4	9 1.4
7	140	512	0.082	0.6 5 3	100	36	7 2.0	90	9 2.9
8	228	500	0.0 7 7	0.770	94	48	64.5	64	9 0.2
9	232	765	0.113	1.042	112	5 5	5 6.0	59	9 2.8
10	240	810	0.147	1.917	130	138	6 0.0	46	8 2.9
11	109	390	0.086	0.8 7 0	724	15	5 0.0	49	9 6.1
12	309	1.081	0.129	1.375	90	91	3 7.0	3 6	9 1. 6
13	192	712	0.066	0.891	105	91	5 7.0	4 2	9 1. 1
14	212	812	0.088	1.188	96	64	4 6.0	3 4	9 2.1
15	204	697	0.075	1.420	126	131	5 0.0	57	8 1.2
16	124	512	0.031	0.543	72	4 2	5 2.5	29	9 1. 7
17	247	830	0.044	0.790	117	75	4 6.0	25	9 0.9

汚水のB.O.D濃度は最低390ppmから最高1,170ppmの試料で、B.O.D - S 5 負荷0.031~0.284 kg/kg-S S・日、B.O.D容積負荷0.543~1917 kg/m . 日の範囲で、負荷B.O.Dを順次増加した場合の処理効率を検討した。この結果除去率90%以上期待できるB.O.D-S 5 負荷は0.13 kg/kg-S S・日以下でありMLS S 濃度を非常に高く保つか、ばっ気時間を長くとらなければならなかった。

M.1 2の場合、MLSSは第一バッキ槽 1 1,000 ppm、第二バッキ槽 1 0.2 4 0 ppm、平均 1 0.6 1 5 ppmであった。その場合の容積負荷は、1,3 7 5 kg/ ボ・日であった。

M.1 8のようにSS負荷が 0.1 3 kg/kg-SS・日以下であっても、容積負荷が 1.3 7 5 kg以上になり、滞留時間が短くなると除去率は低下した。

バッ気槽の水温が10℃以下に低下した場合の実験結果は表-2のとおりで、B.O.D -SS負荷とB.O.D除去率との娯係を図示すると、図-3のとおりであった。

図-3 B.O.D-SS負荷とB.O.D除去率(水温10で以下)

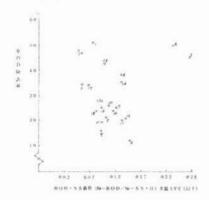
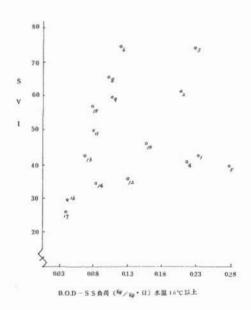
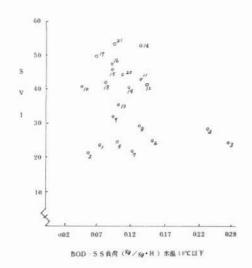


表-2 汚水の処理実験結果(水温10℃以下)

実験番号	汚 水 C.O.D (ppm)	汚 水 B.O.D (ppm)	B.O.D - SS 負 荷	B.O.D 容積負荷	処 理 水 C.O.D	処理水 B.O.D	s.v%	s.v.ı	B.O.D (%) 除去率
1	244	887	0.076	1.221	200	420	3 8.0	23	5 2.6
2	180	560	0.0 5 9	0.753	148	395	2 7.0	21	2 9.4
3	208	1,205	0.265	2.901	152	660	2 7.0	24	4 5.2
4	360	1,260	0.236	2.0 0 4	180	642	2 5.0	28	4 9.0
5	280	800	0.100	1.153	200	630	2 7.0	2 3	21.3
6	300	918	0.150	1.274	235	800	21.0	24	1 2.8
7	200	740	0.120	1.016	188	550	19.0	22	2 5.6
8	196	940	0.136	1.216	16/0	580	2 6.0	29	3 8.2
9	184	765	0.094	1.004	172	640	3 5.0	32	1 6.5
10	106	350	0.051	0.49 0	87	181	3 9.5	41	4 8.2
11	400	1,150	0.135	1.292	275	920	410	4 3	2 0.0
12	250	945	0.138	1.282	200	730	3 8.5	41	2 2.7
13	167	740	0.101	0.878	136	420	310	3 5	4 3.2
1 4	250	770	0.102	1.023	212	512	5 3.5	53	3 3.5
15	195	720	0.092	0.980	163	512	4 8.0	4 5	2 8.8
16	191	712	0.094	0.991	159	530	5 0.0	47	2 5.5
17	230	625	0.068	0.596	155	412	4 4.5	50	3 4.0
18	122	472	0.083	0.6 4 3	110	355	3 3.0	42	2 4.7
19	133	475	0.118	0.878	133	475	30.5	40	2 4.0
20	208	630	0.161	0.8 5 9	168	465	24.0	44	26.1
21	128	450	0.096	0.613	113	362	34.5	54	1 9.5


汚水のB・O・D濃度は最低350ppmから最高1.260ppmで、B・O・D-SS 負荷は0.059~0.265kg/kg-SS・日、B・O・D容積負荷は0.490~2901kg / ㎡・日範囲で、負荷B・O・Dを順次増加した場合の処理効率を検討した。水温10℃以 上に比較して、B・O・Dの除去率は悪く、いづれも50%以下であった。特に5℃以下に なると著しく低下した。


(2) 負荷率とS.V.Iの関係

B.O.D-SS負荷とS.V.Iの関係を図示すると、図-4(水温10℃以上)、図-5(水温10℃以下)のとおりであった。いづれの場合も汚泥の沈降性はよく、S.V.Iは80以下であった。10℃以上の場合、B.O.D濃度が高い汚水(B.O.D800ppm以上)の方が、低い汚水に比較して同一の負荷条件で、S.V.Iが低くなる傾向がみとめられた。

10℃以下の場合は、10℃以上に比較して汚泥の沈降性がよくなる傾向がみとめられた。

図-4 B.O.D-SS負荷とS.V.I(10 で以上)

4. 研究成果の要旨

护布走行式脱水機により、家畜ふん尿、汚水を脱水し、その沪液を二段酸化法により 処理して つぎの結果を得た。

- (1) 汚水の水温10で以上の場合、B.O.D除去率90%以上期待できる、B.O.D-S S負荷は、0.13kg/kgSS・日以下であった。最初の設計値、0.3kg/kgSS・日に比較 して43.3%であり、MLSS濃度を非常に高く保つか、ばっ気時間を長くとらなければな らなかった。
- (2) B.O.D-SS負荷 0.1 3 kg/kgSS・日以下で、B.O.D除去率9 0 %以上の場合のB.O.D容積負荷は1.3 7 5 kg/m・日であり、設計値の9 1.6 %であった。
- (3) 水温10℃以下の場合、B.O.DーSS負荷、0.059~0.265kg/kgSS・日の範囲で、浄化効果を検討したが、10℃に比較して著しく悪く、B.O.D除去率は50%以下であった。
- (4) B.O.D-SS負荷とS.V.Iの関係は、同一の負荷条件でB.O.D濃度が高い汚水(800ppm以上)の方が低い汚水に比較して、S.V.Iが低くなる傾向が認められた。